20	ı	<i>r</i> -	50					`
	3.6			SWL-	-18	Ro	ll No	Annual 2013
Mathematics (INTERMEDI		NTERMEDIA	ATE PART - I, Class 11th) - (IV)				Paper : I	
	: 30 Minute		Name of the second	ctive Code				Marks: 20
			E 1000000000000000000000000000000000000	ojective type que	stion as A,	B, C and D.	The choice	which
	vou think	is correc	t, fill that circle	in front of that	question nu	mber. Use ma	arker or pe	n to fill the
				nore circles will				
1. i	$\frac{n!}{(n-r)!}$							
	(A)	$^{n}p_{r}$	(B)	"c,	(C)	$^{r}p_{n}$	(D)	.r _c ,
i	i. If 1/a, 1/b and 1/c are in G.P then common ratio is equal to:							
	(A)	$\pm \sqrt{\frac{c}{a}}$	(B)	$\pm\sqrt{\frac{a}{c}}$	(C)	$\pm \sqrt{a+c}$	(D)	$\pm\sqrt{a-c}$
ii	ii. Sum of n	- arithm	netic means bet	ween a and b is	s equal to:			
				$n(\frac{a-b}{2})$		$\frac{a+b}{2}$	(D)	$n(\frac{a+b}{2})$
	$\frac{A}{x-1} + \frac{A}{x}$	$\frac{B}{+1}$ is a	partial fraction	form of the prop	er fraction:			
	(A)			$\frac{1}{x^3-1}$	(C)	1	(D)	$\frac{1}{x^3+1}$
	v. If $x-2$	'is a fac	ctor of polynon	$x^3 + 2x^2 + k$	x + 4 then	k equals:		
	(A)	10	(B)	-10	(C)	2	(D)	4
	vi. The sum	of all c	ube roots of un	ity equals:				
	(A)	1	(B)	ω	(C)	0	(D)	ω^2
	vii. Let <i>A</i> =	$\begin{bmatrix} 1 & 2 \\ 2 & 3 \\ 3 & 5 \end{bmatrix}$	$\begin{bmatrix} 3x \\ 6x \\ 9x \end{bmatrix} $ then $ A $	is equal to:				
	(A)	1	(B)	3	(C)	2	(D)	0

viii. If A is a square matrix and A' = A, then A is called

(A) hermitian matrix (B) skew hermitian matrix (C) symmetric matrix (D) skew symmetric matrix ix. If 'p' is a logical statement, then $p \land \neg p$ is always:

conditional tautology (D) (C) (A) (B) contingency absurdity

x. If $(x+iy)^2 = a+ib$ then $x^2 - y^2$ equals:

 $a^2 + b^2$ (B) $a^2 - b^2$ (A) (C) (D) a+ba-b

Period of Cot x/2 is equal to:

SUL-18

(A)

 2π

(B)

41

(C)

(D)

A coin is tossed twice then probability of getting all heads equal:

xii. (A)

1/2

(B)

1/3

(C)

1/4

(D)

2/3

 3π

xiii $\frac{a}{Sin\alpha} = \frac{b}{Sin\beta} = \frac{c}{Sin\gamma}$ is called

(A)

Sine law

(B)

Cosine Law

(C)

Tangent law

(D)

Fundamental law

xiv. If α , β and γ are angles of triangle ABC, then $\cos(\frac{\alpha+\beta}{2})$ will be equal to:

(A)

 $Sin \alpha$

(B)

Siny

(C) $Sin \frac{\gamma}{2}$

(D) $Sin \beta$

xv. In an oblique triangle ABC, if a = 2 and $\alpha = 30^{\circ}$, then circum-radius 'R' is equal to:

(A)

(B)

(C)

1

(D)

2

xvi. $Sin^{-1} \left[A\sqrt{1-B^2} + B\sqrt{1-A^2} \right]$ is equal to

(A) $Cos^{-1}A + Cos^{-1}B$ (B) $Cos^{-1}A - Cos^{-1}B$ (C) $Sin^{-1}A + Sin^{-1}B$

(D)

xvii. The solution of $Sin x = -\frac{\sqrt{3}}{2}$ in interval $[0, 2\pi]$ equals

(A) $\frac{4\pi}{3}, \frac{2\pi}{3}$ (B) $\frac{4\pi}{3}, \frac{5\pi}{3}$ (C) $\frac{\pi}{3}, \frac{5\pi}{3}$

(D)

Second term in the expansion of $(\sqrt{x} + \frac{1}{2x^2})^{10}$ equals:

(A)

(B)

 $10x^{2/5}$

(C)

 $10x^{5/2}$

(D)

xix. If the number of terms in the expansion of $(a+b)^n$ is 16 then 'n' equals

(A)

18

(B)

16

(C)

17

(D)

15

xx. Length 'l' of an arc of a circle with radius r and central angle θ is equal to :

(A)

 $r^2\theta$

(B)

 $r\theta$

(C)

 $r\theta^2$

(D) $\frac{1}{2}r^2\theta$

E PART - I, Class 11th Paper: I Mathematics Marks: 80 (SUBJECTIVE) Time: 2:30 Hours Section I is compulsory. Attempt any three (3) questions from section II. (SECTION-I) $(8 \times 2 = 16)$ Write short answers to any Eight parts: 2. Prove that $\frac{-7}{12} - \frac{5}{18} = \frac{-21 - 10}{36}$. Separate $\overline{4+5i}$ in to real and imaginary parts. iii. If $\forall z_1, z_2 \in C$ prove that $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$. iv. Show A-B and B-A by Venn diagram when A and B are overlapping sets. v. Show that the statement $\sim (p \rightarrow q) \rightarrow p$ is a tautology. vi. Find the inverse of the relation $\{(x, y)/y = 2x + 3, x \in \mathbb{R}\}$. Solve the matrix equation 3X - 2A = B. If $A = \begin{bmatrix} 2 & 3 & -2 \\ -1 & 1 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & -3 & 1 \\ 5 & 4 & -1 \end{bmatrix}$ viii. If $A = \begin{bmatrix} 1 & -1 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ find the values of a and b. ix. Define co-factor of an element of a matrix. x Solve by completing square $x^2 - 3x - 648 = 0$ $x^{2/5} + 8 = 6x^{1/5}$ xi. Solve the equation: xii. Show that $x^3 - y^3 = (x - y)(x - \omega y)(x - \omega^2 y)$ where ω is the cube root of unity. $(8 \times 2 = 16)$ Write short answers to any Eight parts: 3. Resolve x^2-1 into partial fraction. (1+1=2)ii. If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in G.P, show that common ratio is $\pm \sqrt{\frac{a}{c}}$. (1+1=2)(1+1=2)iii. Which term of A.P 5, 2, -1, is -85? iv. Define G.M between two numbers 'a' and 'b' and show that (G.M) geometric mean = $\pm \sqrt{ab}$ (1+1=2)V. In series $y=1+2x+4x^2+8x^3+...$, show that $x=\frac{y-2}{2y}$. vi. If a=-2, b=-8(1+1=2)vi. If a = -2, b = -8, find G and H, also show that G < H for (G < O) with (1+1=2)usual notation. vii. Prove that $p_r = n \cdot p_{r-1}$, where p is permutation. viii. How many necklaces can be made from 6 beads of different colours? (1+1=2)ix. How many triangles can be formed by joining the vertices of polygon (1+1=2)having 8 sides? Show that $1+2+4+...+2^{n-1}=2^n-1$ is true for n=4, 5. (1+1=2)xi. Show that $n^2 + n$ is divisible by 2 for n = 2, 3. (1+1=2)Expand $(2-3x)^{-1}$ up to three terms. (1+1=2)Write short answers to any Nine parts: $(9 \times 2 = 18)$ 4. $\tan \pi/3 - \tan \pi/6$

(Turn Over)

ii. Prove that $\frac{Cos\theta - Sin\theta}{Cos\theta + Sin\theta} = \frac{Cot\theta - 1}{Cot\theta + 1}$

Evaluate $\frac{1+\tan \pi/3 \tan \pi/6}{1+\tan \pi/6}$

 $(Cos\theta - \tan \theta)^2 = \frac{(1 - Sin\theta)}{1 + Sin\theta}$

iv. By using fundamental law of trigonometry, show that $Sin(\pi/2 + \alpha) = Cos\alpha$

 $Sin(45^{\circ} + \alpha) = \frac{1}{\sqrt{2}}(Sin\alpha + Cos\alpha).$

v. Prove that

vi. Find the period of Cot 8x.

vii. Find that value of $\cos 2\alpha$ for $\cos \alpha = 3/5$ where $0 < \alpha < \pi/2$

viii. If $\beta = 60^{\circ}$, $\gamma = 15^{\circ}$, $b = \sqrt{6}$ then find c and α for any triangle ABC.

ix. Find the area of triangle, given two sides and their included angle, a = 4.33, b = 9.25, $r = 56^{\circ} 44'$.

X. Show that $r_1 = s \tan \frac{\alpha}{2}$.

xi. Find the value of the expression $Cosec(tan^{-1}(-1))$.

xii. Find the solutions of $\sin x = -\sqrt{\frac{3}{2}}$ in $[0, 2\pi]$

xiii. Find the value of θ , satisfying the equation $3 \tan^2 \theta + 2\sqrt{3} \tan \theta + 1 = 0$.

(SECTION - II)

Note: Attempt any three (3) questions:

 $(3 \times 10 = 30)$

5. (a) Convert $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ to logical form and prove by constructing truth table. (2+3)

(b) Use Cramer's rule to solve the system:

$$2x_{1} - x_{2} + x_{3} = 8$$

$$x_{1} + 2x_{2} + 2x_{3} = 6$$

$$x_{1} - 2x_{2} - x_{3} = 1$$

$$(2+1+1+1)$$

6. (a) Prove that $\frac{x^2}{a^2} + \frac{(mn+c)^2}{b^2} = 1$ will have equal roots, if $c^2 = a^2m^2 + b^2$ (5)

(b) Resolve into partial fraction:

 $\frac{x^3 + 2x + 2}{(x^2 + x + 1)^2} \tag{5}$

7. (a) Find the sum of an infinite series $r + (1+k)y^2 + (1+k+k^2)r^3 + \dots$ (5)

(b) Find the co-efficient of x^n in the expansion of $\frac{(1+x)^2}{(1-x)^2}$. (5) $\tan \theta + \sec \theta - 1$

8. (a) Prove that $\frac{\tan \theta + \sec \theta - 1}{\tan \theta - \sec \theta + 1} = \tan \theta + \sec \theta$ (5)

(b) Reduce $\sin^4 \theta$ to an expression involving only function of multiples of θ , raised to the first power. (5)

9. (a) Prove that: $abc(\sin \alpha + \sin \beta + \sin \gamma) = 4\Delta s$ using usual notations. (5)

(b) Prove that $\sin^{-1} \frac{5}{13} + \sin^{-1} \frac{7}{13} = \cos^{-1} \frac{253}{325}$. (5)