37	マケ

Inter. (Port-1)-A- 2019

RWP-11-19

Roll No._

to be filled in by the randidute.

(For all sessions)

Paper Code 6 1 9

Mathematics (Objective Type)

Time: 30 Minutes

Marks: 20

NOTE: Write answers to the questions on objective answer sheet provided. Four possible answers A,B,C & D to each question are given. Which answer you consider correct, fill the corresponding circle A,B,C or D given in front of each question with Marker or pen ink on the answer sheet provided.

1-1. In an oblique triangle, if a = 200; b = 120 and included angle $\gamma = 150^{\circ}$, then its area will be equal to:

(A) 6000

(B) 5000

(C) 2000

(D) 12000

2. If "R" is the circum radius, then its value is:

(A) $\frac{ac}{4\Delta}$

ab

(C) ah

(D) abo

3. The value of $\sin\left(\cos^{-1}\frac{\sqrt{3}}{2}\right)$ is equal to:

(A) 1

(B) -1

(C) = 2

(D) ¹/₂

4. The solution of $\cos ec\theta = 2$ in interval $[0, 2\pi]$ is equal to:

(A) $\frac{\pi}{6}$, $\frac{7\pi}{6}$

 $\frac{\pi}{6}, \frac{5\pi}{6}$

 $(c) \frac{\pi}{3}, \frac{5\pi}{6}$

(D) $\frac{\pi}{3}, \frac{\pi}{6}$

5: If $z = \cos \theta + i \sin \theta$, then |z| is equal to:

(A) 0 July 1. 3.

(8) 1

(C) 2

(D) 3

6: For any two subsets A and B of set U, then (AUB) is equal to:

(A) AUB'

(B) A∩B'

 $(C) A' \cup B$

 $A' \cap B'$

7. If "A" is a square matrix and $(\overline{A})' = A$, then "A" is called:

(A) Skew Symmetric

(B) Symmetric

(C) Skew Hermitian

(D) Hermitian

8. If $A = \begin{bmatrix} 7 & 3 & 6 \\ 2 & 3 & 1 \end{bmatrix}$ is a singular matrix, then 'x' is equal to:

(A) 3

(B) 4

/C) 6

(D)

9. If α and β are roots of $ax^2 + bx + c = 0$, then $\alpha \cdot \beta$ is equal to:

(A) -/

 $(B) \frac{a}{2}$

C) 9/

(D) %

RWP-11-19

10. If "w" is a cube root of unity, then $(1+w-w^2)(1-w+w^2)$ will be equal to:							
	(A) 3	(B) 4	(C) 2	(D) 1			
	3	1 1	14-015 57-01	3.1.2 S			
11. If $\frac{3}{(x-1)(x+2)} = \frac{1}{x-1} + \frac{A}{x+2}$, then "A" is equal to:							
	(A) -1	(B) 3	(C) 2	(D) 4			
12. The n th root of product of n Geometric Means between a and b is equal to:							
	(A) $(ab)^{Y_n}$	(B) a"b"	(c) $n\sqrt{ab}$	(D) √ab			
	(A) (ab)	(B) 4 0	(C) "Vub	(D) Vab			
13. If in an A.P; $\frac{a}{n-3} = 2n-5$, then $\frac{a}{n}$ will be equal to:							
	2 (1	21	\ /				
	(A) $\frac{2n+1}{n}$	(B) $2n-1$	$\left(C\right) ^{n+1}$	(D) $^{n-1}$			
14.	$\frac{n!}{(n-r)!r!}$ is equal	to:	\ /				
10	(A) C,	(B) r _p ,	\(c) \(^{c}\)	(D) n _P			
			()	17/			
15. Number of signals given by 5 flags of different colours using 3 flags at a time equals.							
X							
	(A) 30	(B) 40	(C) 50	(D) 60			
			(,)	NA A			
16. Sum of even co-efficient in the expansion of $(1+x)^n$ equals.							
	2##	24-1	/ 27	-1			
	(A) 2"+1	(B) 2 ⁿ⁻¹	(c) 2"	(D) 2 ¹⁻⁷			
17. Third term in the expansion of $(1-2x)^{\frac{1}{2}}$ is equal to:							
	(A) $-9x^2/4$	(B) $9x^2/4$	(c) $4x^2/9$	$(D) - 4x^2/9$			
	(A) /4	(0) /4	(C) /9	(0) /9			
18. The area of a sector of circular region of radius θ and angle θ is equal to:							
, 0.	9 4 0		and Brigle & is equal to:				
	(A) $\frac{1}{2}r\theta^2$	(B) $\frac{1}{2}r^2\theta$	(c) $r\theta^2$	(D) $r^2\theta$			
		2		(0)			
19. If $6\cos^2\theta + 2\sin^2\theta = 5$, then $\tan^2\theta$ will be equal to:							
	V-10		i i	2			
	(A) $\frac{3}{2}$	(B) 3	(C) $\frac{1}{3}$	(D) $\frac{2}{3}$			
20. Period of Sin x/5 is equal to:							
				2π			
	(A) 10π	(B) 5π	(c) 2π	(D) 5			
	821-011-A- ☆ ☆						

.

RWP-11-19

Inter - (Purt-1) -A-2019

Roll No.

_ to be filled in by the sandidute

(For all sessions)

Mathematics (Essay Type)

Time: 2:30 Hours

Marks: 80

Section -I

2. Write short answers of any eight parts from the following.

2x8=16

i. Find the modulus of complex number 3+4i

ii. Simplify by justifying each step $\frac{\frac{-4+5}{4-5}}{\frac{1}{4-5}}$ by writing properties.

iii. Factorize the expression $9a^2 + 16b^2$.

iv. Define absurdity and give one example.

v. Solve the system of linear equations. $3x_1 - x_2 = 5$ vi. Find the value of x if $\begin{bmatrix} 1 & 2 & 1 \\ 2 & x & 2 \\ 3 & 6 & x \end{bmatrix} = 0$

vil. Define Row Rank of a matrix.

viii. Solve the equation $x^{-2} - 10 = 3x^{-1}$.

ix. If $A = \{1, 2, 3, 4\}$, $B = \{3, 4, 5, 6, 7, 8\}$, $C = \{5, 6, 7, 9, 10\}$ verify distributivity of union over intersection.

x. Find the inverse of the relation $\{(1,3),(2,5),(3,7),(4,9),(5,11)\}$

xi. Use remainder theorem to find the remainder when $x^3 - x^2 + 5x + 4$ is divided by x - 2.

xii. Find the roots of the equation $16x^2 + 8x + 1 = 0$ by using quadratic formula.

3. Write short answers of any eight parts from the following.

2x8=16

i. Resolve $\frac{1}{x^2-1}$ into partial fraction.

ii. Find 5th term of Geometric progression G.P 2,6,12,.....

ill, Define Circular permutation.

iv. Expand $(4-3x)^{\frac{1}{2}}$ upto three terms.

. v. If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are In Arithmetic progression (A.P) show that common difference is $\frac{a-c}{2ac}$

vi. If 5,6 are two Arithmatic Means (A.M) between "a" and "b". Find "a" and "b".

vii. If the numbers $\frac{1}{k}$, $\frac{1}{2k+1}$, $\frac{1}{4k-1}$ are in (H.P) Hormonic Progression, Find "K".

viii. How many words can be formed from the letters of PLAN" using all letters when no letter's to be repeated?

ix. If $\frac{n}{5} = \frac{n}{4}$, where c stands for combination then find value of n.

x. Verify the inequality $n > 2^n - 1$ for integral values of n = 4, 5.

xi. If x is so small that its square and higher power cab be neglected, show that $\frac{1-x}{\sqrt{1-x}} = 1 - \frac{3}{2}x$. xii. Prove that Hormonic Mean (H.M) between two numbers "a" and "b" is $\frac{2ab}{x}$.

xii. Prove that Hormonic Mean (H.M) between two numbers "a" and "b" is $\frac{2ab}{a+b}$ 4. Write short answers of any nine parts from the following.

2x9=18

i. Prove the fundamental identity $\cos^2\theta + \sin^2\theta = 1$ ii. Verify the result $\tan 2\theta = \frac{2\tan\theta}{1 - \tan^2\theta}$ for $\theta = 30^\circ$

- iii. Show that $\frac{\cos 11^{0} + \sin 11^{0}}{\cos 11^{0} \sin 11^{0}} = \tan 56^{0}$
- lv. Prove that $\cos 330^{\circ} \sin 600^{\circ} + \cos 120^{\circ} \sin 150^{\circ} = -1$
- v. Find the period of $\cos ec(10x)$
- vi. Show that $\gamma = 4R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}$ with usual notation.
- vii. Find the value of $\cos\left(\sin^{-1}\frac{1}{2}\right)$
- viii. Show that $\frac{\cot^2 \theta 1}{1 + \cot^2 \theta} = 2\cos^2 \theta 1$
- ix. Express the following difference as the product of trignometric functions $\cos 7\theta \cos \theta$.
- x. In any triangle $\triangle ABC$, if $\alpha = 16.1$, $\alpha = 42^{\circ}45^{\circ}$, $\gamma = 74^{\circ}32^{\circ}$, then find " β " and α ".
- xi. Find the area of triangle ABC, given two sides and their included angle $a = 200, b = 120, \gamma = 150^{\circ}$
- xii. Find the solutions of the equation $\cot \theta = \frac{1}{\sqrt{3}}$ in the interval $[0, 2\pi]$
- xiii. Find the values of θ satisfying the equation $3 \tan^2 \theta + 2 \sqrt{3} \tan \theta + 1 = 0$

Note: Attempt any three questions from the following

10x3=30

- 5. (a) Verify De Morgan's Laws for the given sets $U = \{1, 2, 3, \dots, 20\}$, $A = \{2, 4, 6, \dots, 20\}$, $B = \{1, 3, 5, \dots, 19\}$
- 6. (a) If the roots of $px^2 + qx + q = 0$ are α and β , then prove that $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{q}{\beta}} = 0$
 - (b) Resolve into partial fraction $\frac{x^2}{1-x^4}$.
- 7. (a) The sum of an infinite geometric series is 9 and sum of square of its terms is $\frac{81}{5}$. Find the series
 - (b) If $y = \frac{2}{5} + \frac{1.3}{2!} \left(\frac{2}{5}\right)^2 + \frac{1.3.5}{3!} \left(\frac{2}{5}\right)^3 + \dots$, then prove that $y^2 + 2y 4 = 0$
- 8. (a) A railway train is running on a circular track of radius 500 meters at the rate of 30Km per hour. Through what angle will it turn in 10 seo?
 - (b) If $\tan \alpha = \frac{-15}{8}$ and $\sin \beta = \frac{-7}{25}$ and neither the terminal side of the angle of measure α nor that of β is in IV quadrant. Find $\sin(\alpha+\beta)$ and $\cos(\alpha+\beta)$.
- 9. (a) One side of a triangular garden is 30m. If two corner angle are $22^{\circ} \frac{1}{2}$ and $112^{\circ} \frac{1}{2}$, find the cost of planting the grass at the rate of Rs.5 per square meter
 - (b) Prove that $\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{3}{5} \tan^{-1}\frac{8}{19} = \frac{\pi}{4}$

822-011-A-