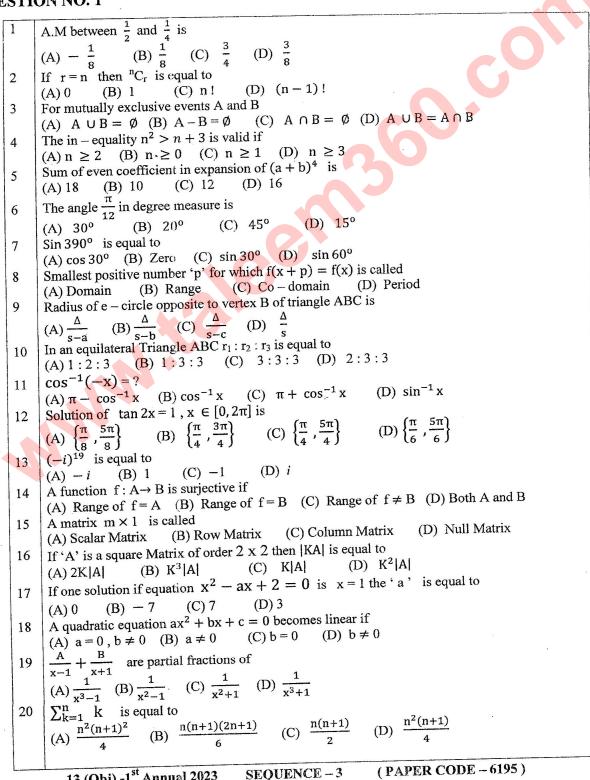
PAPER CODE - 6195

11th CLASS - 1st Annual 2023

MATHEMATICS

OBJECTIVE

TIME: 30 MINUTES


GROUP: FIRST

DGK-11-1-23

MARKS: 20

NOTE: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question.

OUESTION NO. 1

MATHEMATICS GROUP: FIRST

DGK-11-1-23 SUBJECTIVE SECTION-1

TIME: 2.30 HOURS

MARKS: 80

		Dak-11-1-23 SECTION-1
OUES	STION	NO 2 Write short answers of any Eight (8) parts of the following
	i	State commutative law of addition and associative law of multiplication of real numbers.
Ì	ii	Separate into real and imaginary parts $\frac{i}{1+i}$
	iii	Write the set $\{x/x \in \mathcal{R} \land x \neq x\}$ in the descriptive and tabular form
	iv	Write converse and inverse of the conditional $\sim p \rightarrow q$
	-	() interest larger
	vi	If $A = \begin{bmatrix} 1 & -1 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find the values of "a" and "b"
	vii	Show that the statement $(p \land q) \rightarrow p$ is rautology. If $A = \begin{bmatrix} 1 & -1 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find the values of "a" and "b" If $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 0 \\ -2 & -2 & 1 \end{bmatrix}$, then find A_{32}
	viii	If the matrices A and B are symmetric and $AB = BA$, show that AB is symmetric
	ix	Define reciprocal equation.
	х	Evaluate $(1 + \omega - \omega^2)^8$
	хi	Prove that sum of four 4th roots of unity is zero.
le i	xii	Use remainder theorem to find the remainder when $x^2 + 3x + 7$ is divided by $x + 1$ 16 17 18 19 19 19 19 19 19 19 19 19
QUE	ESTIC	ON NO. 3 Write short answers of any Eight (8) parts of the following
	i	What are partial fractions?
	ii	Find the 13th term of the sequence x , 1, $2-x$, $3-2x$,
	iii	Find three A.Ms between 3 and 11.
	iv	The sum of S_9 and S_7 is 203 and $S_9 - S_7 = 49$, S_7 and S_9 being the sums of the first 7 and 9
		terms of an A.P respectively. Determine the series.
	V	If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in G.P show that the common ratio is $\pm \sqrt{\frac{a}{c}}$
	vi	Find the Geometric means between 4 and 16.
,	vii	Find the value of n when ${}^{n}p_{4}$: ${}^{n-1}p_{3} = 9$: 1
	viii	In how many ways can 4 keys be arranged on a circular key ring?
	ix	A natural number is chosen out of first fifty natural numbers. What is the probability that the chosen number is a multiple of 3 or of 5?
		chosen number is a multiple of 3 or of 5? Prove the formula for $n = -1$, $0 = 3+5+7++(2n+5) = (n+2)(n+4)$
	X	1 tove the formatic for
	xi	Expand $(a - \sqrt{2}x)^4$
	xii	Expand the following up to 4 terms $(2-3x)^{-2}$ 18
QU	ESTI i	ON NO. 4 Write short answers of any Nine (9) parts of the following Show that the area of a sector of a circular region of radius r is $\frac{1}{2}$ r ² θ , where θ is the circular
	ii	If $\tan \theta = \frac{1}{\sqrt{7}}$ and the terminal arm of the angle is not in III quad, find the value of $\frac{1}{\cos^2 \theta + \sec^2 \theta}$
	iii	Prove the identity $(\sec \theta + \tan \theta)(\sec \theta - \tan \theta) = 1$
	iv	Prove that $\cos 330^{\circ} \sin 600^{\circ} + \cos 120^{\circ} \sin 150^{\circ} = -1$
	v	Prove $\frac{\sin(\alpha+\beta)+\sin(\alpha-\beta)}{\cos(\alpha+\beta)+\cos(\alpha-\beta)} = \tan \alpha$
	vi	Prove the identity $\cot \alpha - \tan \alpha = 2\cot 2\alpha$
	vii	Find the period of sec 9x
	viii	$\frac{1}{2}$ $\frac{1}$
	ix	Show that the $r_3 = s \tan \frac{y}{2}$
	x	Prove that $\tan \frac{\alpha}{2} = \sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$
	xi	Without using Calculator show that $\cos^{-1} \frac{4}{5} = \cot^{-1} \frac{4}{3}$
	xii	$S_{\text{abso}} \cos^2 \theta = \frac{4}{3} + \theta \in [0, 2\pi]$
	xii	Find the value of θ $2\sin^2\theta - \sin\theta = 0$, $\theta \in [0, 2\pi]$
	1	P.T.O

Note: Attempt any Three questions from this section

 $10 \times 3 = 30$

~	
Q. 5-(A)	Show that $\begin{vmatrix} x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix} = (x+3)(x-1)^3$
(B)	Solve the equation $\left(x + \frac{1}{x}\right)^2 - 3\left(x + \frac{1}{x}\right) - 4 = 0$
Q. 6 -(A)	Resolve $\frac{1}{(x-1)^2(x+1)}$ into partial fraction
(B)	Prove that ${}^{n-1}C_r + {}^{n-1}C_{r-1} = {}^{n}C_r$
Q. 7-(A)	If $y = \frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{8} + \dots$ and if $0 < x < 2$ then prove that $x = \frac{2y}{1+y}$
(B)	Identify the series: $1 + \frac{1}{3} + \frac{1.3}{3.6} + \frac{1.3.5}{3.6.9} + \dots$ as a binomial expansion and find its sum.
Q. 8 -(A)	If $\cot \theta = \frac{5}{2}$ and the terminal arm of the angle is in 1st quadrant. Find the values of $\frac{3 \sin \theta + 4 \cos \theta}{\cos \theta - \sin \theta}$
(B)	Prove that $\frac{2 \sin \theta \sin 2 \theta}{\cos \theta + \cos 3 \theta} = \tan 2 \theta \tan \theta$
Q. 9 -(A)	Prove that $r_1 + r_2 + r_3 - r = 4R$
(B)	Prove that $\cos^{-1} \frac{63}{65} + 2 \tan^{-1} \frac{1}{5} = \sin^{-1} \frac{3}{5}$

13 - (Sub) - 1st Annual 2023

11th CLASS - 1st Annual 2023

MATHEMATICS GROUP: SECOND DGK-11-2-23

TIME: 30 MINUTES

MARKS: 20

NOTE: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question.

QUE	QUESTION NO. 1				
1	If $x^{1/4} = -2$ then $x = -2$				
	(A) 8 (B) -8 (C) 16 (D) -16				
2	If w is the cube root of unity. Then $(1 + w - w^2)^8 = $				
	(A) 256 (B) $+256$ (C) -256 w (D) 256 w				
3	Degree of a constant polynomial is				
	(A) 1 (B) 0 (C) 2 (D) 3				
4	A.M between $1-x+x^2$ and $1+x+x^2$ is				
	(A) $x^2 + 1$ (B) $x + 1$ (C) $\frac{x+1}{2}$ (D) $\frac{x^2+1}{2}$				
5	If $a_n = (-1)^n (2n - 3)$ Then $a_5 = 2$				
J	(A) 7 (B) -7 (C) 13 (D) -13				
6	If n is a negative integer. Then n! is				
	(A) 1 (B) Not defined (C) Zero (D) n				
7	Number of ways of writing the letters of the "WORD" taken all at a time.				
	(A) 24 (B) 4 (C) 6 (D) 25				
8	Francesco Maurolico devised the method of				
	(A) Partial fraction (B) Logarithm (C) Induction (D) Binomial expansion				
9	The middle term in the expansion of $(x - y)^{12}$ is				
10	(A) 5th (B) 6th (C) 8th (D) 7th				
10	One radian is equal to (C) 569 (D) 0.018759				
	(A) 57.296° (B) 57° (C) 56° (D) 0.01875° $\sin 8\theta - \sin 4\theta =$				
11	(A) $2 \sin 6\theta \sin 4\theta$ (B) $2 \cos 2\theta \sin 6\theta$ (C) $2 \cos 6\theta \sin 2\theta$ (D) $-2 \sin 6\theta \cos 2\theta$				
12	Period of tan $\frac{x}{2}$ is				
12	$(A) \pi (B) 2 \pi (C) 3 \pi (D) \frac{\pi}{2}$				
13	Radius of Escribed circle apposite to the vertex B is equal to				
	(A) $\frac{\Delta}{s}$ (B) $\frac{\Delta}{s-c}$ (C) $\frac{\Delta}{s-a}$ (D) $\frac{\Delta}{s-b}$				
14	With usual notation $\frac{abc}{4\Delta}$ is equal to				
1.					
15	(A) r (B) 2 r (C) \mathcal{R} (D) r ₁ The domain of $y = \sin^{-1} x$ is				
1.3	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				
16	If $\sin y = \cos y$ then $y =$				
10	(A) 30° (B) 45° (C) 0° (D) 60°				
17	la + ibl is equal to				
1	$(A) a^2 + b^2$ (B) $\sqrt{a^2 + b^2}$ (C) $a^2 - b^2$ (D) $\sqrt[4]{a^2 - b^2}$				
18	If A^c is complement of set A. Then $A \cap A^c =$				
	$(A)^{\bullet}A \stackrel{\bullet}{\sim} (B) A^{\circ} \qquad (C) \cup \qquad (D) \emptyset$				
19	If a system of linear equation has a unique solution or infinitely many solutions. Then it can be known as				
	(A) Consistent System (B) Inconsistent System (C) Non linear System (D). Unique System				
20	Transpose of Matrix $A = [a_{ij}]_{m \times n}$ is equal to				
	$\left(A\right) \left[a_{ij}\right]_{m \times m} \qquad \left(B\right) \left[a_{ij}\right]_{m \times n} \qquad \left(C\right) \left[a_{ij}\right]_{n \times m} \qquad \left(D\right) \left[a_{ij}\right]_{n \times n}$				
L	117 (Obi) 1st Applied 2023 SEQUENCE -2 (PAPER CODE - 6194)				

MATHEMATICS GROUP: SECOND SECTION I

TIME: 2.30 HOURS
MARKS: 80

SECTION-I Dak-11-2-27 MARKS: 80

	DUK: 11-2-22	
STION	NO. 2 Write short answers of any Eight (8) parts of the following	16
i	Whether closed or not with respect to addition and multiplication is {1}	
ii	Simplify $(-1)^{-21}$	
iii	Write down power set of $\{\emptyset\}$	
	Verify De – Morgan's laws for sets $U = \{1,2,3,,20\}$ A = $\{2,4,6,,20\}$, B = $\{1,3,5,,19\}$	9}
iv	Verify $De = \text{Violigan's laws to sets } O = (1,2,3,,20) \cap (2,1), \dots \dots \cap (2,1) \cap (2,1)$	~
v	Construct truth table for statement $(p \land \sim p) \rightarrow q$	
vi	If $A = \begin{bmatrix} i & 0 \\ 1 & -i \end{bmatrix}$ show that $A^4 = I_2$	
vii	Without expansion show that $\begin{vmatrix} 2 & 3 & -1 \\ 1 & 1 & 0 \\ 2 & -3 & 5 \end{vmatrix} = 0$	
viii	Define Hermitian Matrix	_
ix	Evaluate $(-1+\sqrt{-3})^5 + (-1-\sqrt{3})^5$	
X	When the polynomial $x^3 + 2x^2 + kx + 4$ is divided by $x - 2$, remainder is 14. Find the value of 'x'	
	when the polynomial $x + 2x + 4x + 12 = 3 = 3$, $x + 0$, $y + 0$	
xi	Solve the system of equations $x + y = 5$, $\frac{2}{x} + \frac{3}{y} = 2$, $x \neq 0$, $y \neq 0$	
xii	Sum of positive number and its square is 380. Find the number.	
ESTIC	M NO. 5 Write short answers of any Eight (6) parts of the told was	10
i	Define improper rational fraction and give one example.	
ii	Determine whether 2 is a term of the A.P 17,13,9,	
iii	If 5, 8 are two A.Ms between "a" and "b", find a and b	
iv	Sum the series $(x-a) + (x+a) + (x+3a) + \dots$ to n terms	_
v	Find the 5th term of the G.P: 3, 6, 12,	
vi	If the numbers $\frac{1}{k}$, $\frac{1}{2k+1}$ amd $\frac{1}{4k-1}$ are in harmonic sequence, find k.	
vii	Find the value of n when ${}^{n}p_{2} = 30$	
viii	How many arrangements of the letters of word PAKISTAN, taken all together, can be made.	
ix	What is the probability that a slip of numbers divisible by 4 is picked from the slips bearing	
x	numbers 1,2,3,,10? Prove that $n! > n^2$ for $n = 4,5$	
жi	Find the term independent of x in the expansion of $\left(x - \frac{2}{x}\right)^{10}$	
xii	Expand upto 3 terms $(4-3x)^{1/2}$	
	ON NO. 4 Write short answers of any Nine (9) parts of the following	1
Fair	What is the circular measure of the angle between the hands of a watch at 4 O' Clock?	
	What is the circular measure of the digits between the	-
ii	Find the value of $\sin \theta$ and $\cos \theta$ if $\tan \theta = -\frac{1}{3}$ and the terminal arm of the angle is in quadrant II	
iii	Prove that $Sec^2 \cdot A + Cosec^2 \cdot A = Sec^2 \cdot A \cdot Cosec^2 \cdot A$ (Where $A \neq \frac{n\pi}{2}, n \in \mathbb{Z}$)	
iv	Prove that $\sin(180^{\circ} + \alpha) \sin(90^{\circ} - \alpha) = -\sin\alpha\cos\alpha$	
v	Find the value of tan 105°	_
vi	Express $\cos(2x + 30^{\circ})\cos(2x - 30^{\circ})$ as sum or differences.	
vii	Find the period of $3\cos\frac{x}{5}$	
viii	Solve the triangle ABC if $\beta = 60^{\circ}$, $\gamma = 15^{\circ}$, $b = \sqrt{6}$	
ix	Find the area of the triangle ABC $b=37$, $c=45$, $\alpha=30^{\circ}50'$	
X	Prove that $\mathcal{R} = \frac{abc}{40}$	
xi	Find the value of $\sec \left[\sin^{-1} \left(-\frac{1}{2} \right) \right]$	
	Find the solution of equation which lies $\sin [0, 2\pi]$	
xii	Find the solution of equation which he sign $[0, 2\pi]$	
xii xiii	Find the value of θ satisfying the following equation	

SECTION-II

Note: Attempt any Three questions from this section

DGK-11-2-23

 $10 \times 3 = 30$

-	Attempt	JUK. 11 2 23
	Q. 5-(A)	Show that $\begin{vmatrix} x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix} = (x+3)(x-1)^3$
	(B)	Solve the equation simultaneously $\sqrt{x^2 + x + 1} - \sqrt{x^2 + x - 1} = 1$
	Q. 6 -(A)	Resolve $\frac{x^2+x-1}{(x+2)^3}$ into partial fraction
	(B)	There are 20 chits marked 1,2,3,, 20 in a bag. Find the probability of picking a chit, the number written on which is a multiple of 4 or a multiple of 7
	Q. 7-(A)	If ℓ , m, n are the pth, qth and rth terms of A.P, show that $\ell(q-r) + m(r-p) + n(p-q) = 0$
	(B)	Find the term involving x^5 in the expansion of $\left(\frac{3x}{2} - \frac{1}{3x}\right)^{11}$
	Q. 8 -(A)	If cosec $\theta = \frac{m^2+1}{2m}$ and $m > 0$ $\left(0 < \theta < \frac{\pi}{2}\right)$, find the values of the remaining trigonometric ratios.
	(B)	If α , β , γ are angles of Δ ABC, prove that $\tan \alpha + \tan \beta + \tan \gamma = \tan \gamma \tan \beta \tan \alpha$
	Q. 9 -(A	Prove that $r_1 r_2 + r_2 r_3 + r_3 r_1 = s^2$
	(В	Prove that $\sin^{-1} \frac{5}{13} + \sin^{-1} \frac{.7}{25} = \cos^{-1} \frac{253}{325}$