Roll No	(To be filled in by the ca
MATHEMATICS	(Academic Sessions 2019 – 2021 to 2022 – 2024)

223-1st Annual-(INTER PART – I) Q.PAPER – I (Objective Type)

Time Allowed: 30 Minutes Maximum Marks: 20

the candidate)

GROUP - I

PAPER CODE = 6195 LHP-II-I-23Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling

	two or more circles will result in zero mark in that question.
1-1	Sum of cube roots of unity is:
	(A) $2i$ (B) -1 (C) 0 (D) 1
2	If ${}^{n}P_{2} = 30$ then $n = :$
	(A) 5 (B) 6 (C) 7 (D) 8
3	The modulus of complex number $1-i\sqrt{3}$ is :
	(A) $1+i\sqrt{3}$ (B) $-1+i\sqrt{3}$ (C) 2 (D) $\frac{1}{2}$
4	Arithmetic mean between $\sqrt{2}$ and $3\sqrt{2}$ is :
	(A) $2\sqrt{2}$ (B) $\sqrt{6}$ (C) $\frac{3}{\sqrt{2}}$ (D) $\frac{\sqrt{2}}{2}$
5	If a function $f: A \to B$ is such that Ran $f \subseteq B$ i.e. Ran $f \neq B$ then f is called:
	(A) Into function (B) Onto function
	(C) Injective function (D) Bijective function
6	Partial fractions of $\frac{x^2+1}{(x+1)(x-1)}$ are of the type: (A) $\frac{A}{x+1} + \frac{B}{x-1}$ (B) $1 - \frac{A}{x+1} - \frac{B}{x-1}$
	(C) $1 + \frac{A}{x+1} + \frac{B}{x-1}$ (D) $\frac{Ax+B}{x+1} + \frac{C}{x-1}$ Quadratic equation whose roots are 2 and 3:
7	
	(A) $x^2 - 5x + 6 = 0$ (B) $x^2 + 5x + 6 = 0$ (C) $x^2 - 5x - 6 = 0$ (D) $x^2 + 5x - 6 = 0$
8	If A is a square matrix of order 3 then $ KA = :$
	(A) $K A $ (B) $K^{3} A $ (C) $K^{2} A $ (D) $ A $
9	7 th term of the sequence 2, 6, 11, 17, is :
	(A) 24 (B) 26 (C) 30 (D) 32
10	The trivial solution of homogeneous linear equation is:
	(A) $(0,0,1)$ (B) $(0,1,0)$ (C) $(1,0,0)$ (D) $(0,0,0)$
11	Domain of the function $y = \cot x$ is:
	(A) $-\infty < x < +\infty$ (B) $-\infty < x < +\infty$, $x \neq \frac{(2n+1)\pi}{2}$, $n \in \mathbb{Z}$ (C) $-1 \le x \le 1$ (D) $-\infty < x < +\infty$, $x \ne n\pi$, $n \in \mathbb{Z}$
	(C) $-1 \le x \le 1$ (D) $-\infty < x < +\infty$, $x \ne n\pi$, $n \in \mathbb{Z}$

If A and B are overlapping events then $P(A \cup B) = ---$:

- (A) P(A) + P(B)
- (B) 1 P(A)
- (C) $P(A)+P(B)-P(A\cap B)$ (D) 1-P(B)

The solutions of $\cos ec\theta = 2$ which lie in $[0, 2\pi]$: 13

- (A) $\frac{4\pi}{3}$, $\frac{5\pi}{3}$ (B) $\frac{2\pi}{3}$, $\frac{4\pi}{3}$ (C) $\frac{\pi}{4}$, $\frac{3\pi}{4}$ (D) $\frac{\pi}{6}$, $\frac{5\pi}{6}$

 $\left|\cos\left(\frac{\pi}{2}-\beta\right)\right|=--$:

- (A) $-\sin \beta$ (B) $\sin \beta$
- (C) $\cos \beta$
- (D) $-\cos\beta$

15 $\cos^{-1}(-x) = :$

- (A) $\cos^{-1} x$

- (B) $-\cos^{-1}x$ (C) $\pi \cos^{-1}x$ (D) $2\pi \cos^{-1}x$

2nd term in the expansion of $\left(\frac{a}{2} - \frac{2}{a}\right)^6$ is : 16

- (A) $\frac{a^6}{64}$ (B) $\frac{15}{4}a^2$
- (C) -20 (D) $-\frac{3}{8}a^4$

If $\sin \theta = \frac{12}{12}$ and terminal arm is in quad – I then $\cos \theta = ---$:

- (B) $\frac{-5}{13}$ (C) $\frac{5}{13}$ (D) $\frac{-13}{5}$

18 In any triangle with usual notations $\sin \frac{\gamma}{2} = :$

- (A) $\sqrt{\frac{(s-a)(s-b)}{ab}}$ (B) $\sqrt{\frac{(s-b)(s-c)}{bc}}$ (C) $\sqrt{\frac{(s-c)(s-a)}{ca}}$ (D) $\sqrt{\frac{s(s-c)}{ab}}$

If n is odd in the expansion of $(a+x)^n$ then number of middle term are: 19 |

(A) 2

(B) 3

(C) 4

(D) 1

In law of cosine if $\beta = 90^{\circ}$ then it reduces to:

- (A) $b^2 + c^2 = a^2$ (B) $c^2 + a^2 = b^2$ (C) $a^2 + b^2 = c^2$ (D) $c^2 a^2 = b^2$

LHR-11-1-23 (To be filled in by the candidate)

emic Sessions 2019 - 2021 to 2022 - 2024)

MATHEMATICS

223-1st Annual-(INTER PART – I)

Time Allowed: 2.30 hours

PAPER – I (Essay Type)

GROUP - I

Maximum Marks: 80

SECTION - I

2. Write short answers to any EIGHT (8) questions:

16

- (i) Show that $z^2 + \overline{z}^2$ is a real number where $z \in C$
- (ii) Find the multiplicative inverse of 1-2i
- (iii) Write the descriptive and tabular form of $\{x \mid x \in P \land x < 12\}$
- (iv) Define disjunction.
- (v) If a, b are elements of a group G, solve ax = b

(vi) Find x and y if
$$\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} y & 1 \\ -3 & 2x \end{bmatrix}$$

(vii) Find the cofactors
$$A_{12}$$
 and A_{22} if $A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 3 & 1 \\ 4 & -3 & 2 \end{bmatrix}$

(viii) Without expansion show that
$$\begin{vmatrix} 2 & 3 & -1 \\ 1 & 1 & 0 \\ 2 & -3 & 5 \end{vmatrix} = 0$$

- (ix) Solve the equation $4^{1+x} + 4^{1-x} = 10$
- (x) Show that the product of all the three cube roots of unity is unity.
- (xi) If α , β are the roots of $ax^2 + bx + c = 0$, $a \ne 0$, find the value of $\alpha^2 + \beta^2$
- (xii) The sum of a positive number and its reciprocal is $\frac{26}{5}$. Find the number.

3. Write short answers to any EIGHT (8) questions:

16

- (i) Resolve $\frac{7x+25}{(x+3)(x+4)}$ into partial fraction.
- (ii) If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in A.P., show that $b = \frac{2ac}{a+c}$
- (iii) Sum the series (x-a) + (x+a) + (x+3a) + --- to n terms.
- (iv) Find the 5th term of G.P 3, 6, 12, ----
- (v) If 5 is harmonic mean between 2 and b, find b.
- (vi) Find the sum to n terms of the series whose nth term is $3n^2 + n + 1$
- (vii) Find the value of n when ${}^{n}P_{4}$: ${}^{n-1}P_{3} = 9:1$
- (viii) How many necklaces can be made from 6 beads of different colours?

(ix) Find the value of n, when
$${}^{n}C_{10} = \frac{12 \times 11}{2!}$$

- (x) Verify the statement $1+2+4+---+2^{n-1}=2^n-1$ for n=1,2
- (xi) Calculate by means of binomial theorem (0.97)³ upto three decimal places.
- (xii) Expand $(1-x)^{1/2}$ upto three terms.

5

5

5

5

5

5

5

4. Write short answers to any NINE (9) questions :

- (i) Convert 21.256° to the $D^{\circ}M'S''$ form.
- (ii) Verify $\sin 2\theta = 2\sin \theta \cos \theta$, when $\theta = 45^{\circ}$
- (iii) Prove the identity $\cos \theta + \tan \theta \sin \theta = \sec \theta$
- (iv) Prove that $\sin (180^{\circ} + \alpha) \sin (90^{\circ} \alpha) = -\sin \alpha \cos \alpha$

(2)

- (v) Prove that $\frac{\cos 11^{\circ} + \sin 11^{\circ}}{\cos 11^{\circ} \sin 11^{\circ}} = \tan 56^{\circ}$
- (vi) Find the values of cos 105°
- (vii) Find the period of $\sin \frac{x}{5}$
- (viii) Find θ , if $\cos \theta = 0.9316$
- (ix) Write any two laws of tangents.
- (x) Find the value of R, if a = 13, b = 14, c = 15
- (xi) Find the value of $\tan \left(\cos^{-1} \frac{\sqrt{3}}{2}\right)$
- (xii) Define trigonometric equation. Give one example.
- (xiii) Find the values of θ , satisfying the equation $2\sin^2\theta \sin\theta = 0$; $\theta \in [0, 2\pi]$

SECTION - II

Note: Attempt any THREE questions.

5. (a) Prove that
$$\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} = 4abc$$

- (b) Solve the equation $x^4 3x^3 + 4x^2 3x + 1 = 0$
- 6. (a) Resolve into partial fractions $\frac{5x^2 2x + 3}{(x+2)^3}$
 - (b) Find the value of n and r when ${}^{n-1}C_{r-1}: {}^{n}C_{r}: {}^{n+1}C_{r+1} = 3:6:11$
- 7. (a) If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in G.P., show that the common ratio is $\pm \sqrt{\frac{a}{c}}$
 - (b) Show that $\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + ----+ \binom{n}{n-1} = 2^{n-1}$
- 8. (a) Prove that $\frac{1}{\cos ec\theta \cot \theta} \frac{1}{\sin \theta} = \frac{1}{\sin \theta} \frac{1}{\cos ec\theta + \cot \theta}$
 - (b) Reduce $\sin^4 \theta$ to an expression involving only function of multiples of θ , raised to first power.
- 9. (a) Solve the triangle using first law of tangents and then law of sines a = 36.21, b = 42.09, $\gamma = 40^{\circ}29'$
 - (b) Prove that $\sin^{-1}\frac{5}{13} + \sin^{-1}\frac{7}{25} = \cos^{-1}\frac{253}{325}$

50·CO

	Roll No (To be filled in by the candidate)									
MATHEMATICS (Academic Sessions 2019 – 2021 to 2022 – 2024) O.PAPER – I (Objective Type) 223-1 st Annual-(INTER PART – I) Time Allowed: 30 Minutes										
Q.PAPER – I (Objective Type) 223-1 st Annual-(INTER PART – I) Time Allowed: 30 Minutes GROUP – II Maximum Marks: 20 PAPER CODE = 6192 (HP – 1/–2–23)										
		PAPER CO	DE = 6192 / HR-1/-	-2-23						
Note:	ote. Four possible answers A. B. C and D to each question are given. The choice which you think is correct,									
	fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or initing									
· · · · · · · · · · · · · · · · · · ·	two or more circles will result in zero mark in that question.									
1-1	The multiplicative	e inverse of (1,0)								
	(A) 0	(B) 1	(C) (1,0)	(D) (0,1)						
2	Which one of them is unary operation:									
	(A) Addition		on (C) Subtraction	(D) Negation						
3	If A is a square	matrix of order 3 ×	43 then KA =							
	(A) $K[A]$	(B) $K^2 A $	(C) $K^3 A $	$ (D) K^9 A $						
4	A square matrix	A = [a, 1] is called a	a skew-symmetric if:							
	71 Square matrix	21 - [w _y] 25 cm = c								
	$(A) A^t = A^{}$	(B) $A^t = -A$	(C) $A^t = \pm A$	(D) $A^{-1} = A$						
5	Roots of quadratic equation $x^2 - 7x + 10 = 0$ are :									
				(D) $-2, -5$						
	(A) 2, 3	(B) $-2,5$	(C) Z , -3	(D) 2, 3						
6	Product of all thre	ee cube roots of unit	y is:							
	(A) <i>i</i>	(B) $-i$	(C) 1	(D) -1						
7	Types of rational	fractions are:								
-	(A) 1	(B) 2	(C) 3	(D) 4						
8	A.M. between x	-3 and x+5 is :								
	(A) $x+1$	(B) $2x+1$	(C) $2x+2$	(D) 2						
9	G.M. between 1	and 16 is:								
	(A) -5	(B) 4	(C) 6	(D) 8						
10	P(E) represents the	he probability of an	event "E" and $0 \le P(E) \le$	1 for $P(E) = 0$ the						
10	event will be:	production,								
		(D) 0 =	(C) Doggible	(D) Impossible						
	(A) Certain	(B) One	(C) Possible \overline{E}	(D) Impossible						
11	The probability the	hat an event does no	t occur, $P(E) = :$							
	(A) $1-P(E)$	(B) $1+P(E)$	(C) $2-P(E)$	(D) $2+P(E)$						
12	The total number	of terms in the expa	ansion of $(a+x)^n$ is:							
	(A) n+2	(B) $n + 1$	(C) n	(D) n-1						
13	The statement $n^2 > n+3$ hold for $n = :$									
				(D) 3						
	(A) 0	(B) 1	(C) 2	(D) 3						

			•										
	20		19		18		17		16		15		14
(A) $\frac{\pi}{2}$	Solution of the equation	(A) $\frac{\pi}{3}$	$\cos^{-1}\left(\frac{1}{2}\right) = :$	(A) r	<i>S</i>	(A) r	$\sqrt{s(s-a)(s-b)(s-c)} = :$			(A) sin 2α	$1-2\sin^2\alpha=:$	(A) 75°	$\frac{2\pi}{3}$ radian in degree is
(B) $\frac{\pi}{6}$	uation $\sin x = \frac{1}{2}$ in $[0, 2\pi]$ is :	(B) $\frac{\pi}{4}$		(B) 1/1	0	(B) A	(s-c)=:		The period of tangent function is:	(B) $\sin \frac{\alpha}{2}$		(B) 100°	gree is :
(C) $\frac{\pi}{4}$	$[0,2\pi]$ is :	(C) $\frac{\pi}{6}$		(C) 7 ₂		(C) As		(C) $\frac{\pi}{3}$		(C) cos 2a		(C) 110°	
(D) $\frac{\pi}{3}$		(D) $\frac{\pi}{2}$		(D) ₇₃		(D) <i>r</i> ₁		(D) π		(D) cos α		(D) 120°	

(Academic Sessions 2019 - 2021 to 2022 - 2024)

MATHEMATICS

223-1st Annual-(INTER PART – I)

Time Allowed: 2.30 hours SECTION - I CHR-11-2-23

Maximum Marks: 80

PAPER – I (Essay Type)

2. Write short answers to any EIGHT (8) questions:

16

- (i) Show that $\forall z \in C$, $(z \overline{z})^2$ is a real number.
- (ii) Simplify $(a+bi)^{-2}$
- (iii) Write the power set of $\{+,-,\times,\div\}$
- (iv) Write the converse, inverse of $\sim p \rightarrow q$
- (v) Just, convert $(A \cup B)' = A' \cap B'$ and $(A \cap B)' = A' \cup B'$ into logical form.
- (vi) If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find the values of a and b
- (vii) Solve the equations $2x_1 3x_2 = 5$ $5x_1 + x_2 = 4$
- (viii) Define cofactor of an element of matrix.
- (ix) Solve the equation $x^3 + x^2 + x + 1 = 0$
- (x) If α , β are the roots of $x^2 px p c = 0$, prove that $(1 + \alpha)(1 + \beta) = 1 c$
- (xi) Discuss the nature of roots $2x^2 5x + 1 = 0$
- (xii) Give the statement of factor theorem.

3. Write short answers to any EIGHT (8) questions :

16

- (i) Without finding constants, write $\frac{9x-7}{(x^2+1)(x+3)}$ into partial fraction form.
- (ii) If $a_{n-3} = 2n-5$, find nth term of A.P.
- (iii) Sum the series 3 + 5 7 + 9 + 11 13 + 15 + 17 19 + --- + 3n terms.
- (iv) If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in G.P, then show that common ratio is $\pm \sqrt{\frac{a}{c}}$
- (v) If 5 ist the H.M. between 2 and b, find the value of b.
- (vi) Write formula for $\sum_{k=1}^{n} k$ and $\sum_{k=1}^{n} k^3$
- (vii) If ${}^{11}P_n = 11.10.9$, then find n
- (viii) How many signals can be given by 5 flags of different colours using 3 flags at a time?
- (ix) A die is thrown twice. What is the probability that sum of dots shown is either 3 or 11?
- (x) Using binomial theorem, expand $\left(3a \frac{x}{3a}\right)^{3}$
- (xi) Find middle term in the expansion of $\left(\frac{x}{2} + \frac{2}{\sqrt{2}}\right)^{12}$
- (xii) Expand $(1-2x)^{\frac{1}{3}}$ upto first three terms.

4. Write short answers to any NINE (9) questions :

18

- (i) Define angle in the standard position.
- (ii) If $\tan \theta = -\frac{1}{3}$ and the terminal arm of angle is in second quadrant then find $\sec \theta$
- (iii) Find $\sin \theta$ and $\cos \theta$ for $\theta = \frac{19\pi}{3}$
- (iv) If α , β , γ are angles of triangle ABC then prove $\sin(\alpha + \beta) = \sin \gamma$
- (v) Without calculator or table, find cos (75°)
- (vi) Prove that $\tan (45^{\circ} + A) \tan (45^{\circ} A) = 1$
- (vii) Define period of a trigonometric function.
- (viii) Solve the right triangle ABC in which $r = 90^{\circ}$, a = 3.28, b = 5.74
- (ix) By using the law of cosine, write the formula of $\cos \alpha$ and $\cos \beta$
- (x) Solve the triangle ABC if $\beta = 60^{\circ}$, $\gamma = 15^{\circ}$ and $b = \sqrt{6}$
- (xi) Define the principal sin function.
- (xii) Solve the equation $\sin x = \frac{1}{2}$
- (xiii) Solve the equation $\sin x + \cos x = 0$ and find its general solution set.

SECTION - II

Note: Attempt any THREE questions.

- 5. (a) If $A = \begin{bmatrix} i & 1+i \\ 1 & -i \end{bmatrix}$ show that $A (\overline{A})^t$ is skew-hermitian.
 - (b) When $x^4 + 2x^3 + kx^2 + 3$ is divided by x 2 and remainder is 1, find the value of k.
- 6. (a) Resolve into partial fraction $\frac{1}{(x-1)^2(x+1)}$
 - (b) Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$
- 7. (a) Find 'n' so that $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ may be H.M. between a and b
 - (b) Find (2n+1)th term from the end in expansion of $\left(x-\frac{1}{2x}\right)^{3n}$
- 8. (a) If $\tan \theta = \frac{1}{\sqrt{7}}$ and the terminal arm of the angle is not in the III quad., find the

value of
$$\frac{\cos ec^2\theta - \sec^2\theta}{\cos ec^2\theta + \sec^2\theta}$$

- (b) Prove that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$
- 9. (a) Solve the triangle ABC if a = 7, b = 3, $\gamma = 38^{\circ}13'$
 - (b) Prove that $\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{3}{5} \tan^{-1}\frac{8}{19} = \frac{\pi}{4}$