		OBJEC	TIVE	
N	OTE: You have four	choices for each objective t	type question as A , B , (and D . The choice which
~ ~	the circles. Cut	rrect, fill that circle in front ting or filling two or more ci	of that question numbe	r. Use marker or pen to fill
QU	ESTION NO. 1		DGK-1-	- 24
1	1	+1) (n) (n-1) is		
	(A) $\frac{(n+1)!}{(B)!}$	$\frac{(n-2)!}{(n+1)!}$ (C) $\frac{(n+1)!}{n!}$	$(D) = \frac{n!}{n!}$	
2	$(2+i)^2 - (2-i)^2 = -$	n+1)! (-/ n!	(n+1)!	
-	(A) $4i$ (B) 8	i (C) 6 i (D) 1	.` n <i>i</i>	
3	Value of $\sin^2 \pi / 4$	$-\cos^2 \pi / 4 =$		
		(C) 1 (D) $\frac{1}{\sqrt{2}}$	Summer or and	
4	$\operatorname{Sec}(\pi/2 - \theta) =$	V Z	The same of the sa	
	(A) $-\sec\theta$ (B) $-$		(D) cosec θ	9
5	Period of cosec x is	(0) 000	(b) cosco	
	(A) 2π (B) π	(C) 3π (D) π	/2(
6	Radius of escribed cir	rcle opposite to vertex A or	triangle is	
	(A) $\frac{\Delta}{S}$ (B) $\frac{\Delta}{S-a}$	(C) $\frac{\Delta}{S-b}$ (D) $\frac{\Delta}{S-b}$	A C	
7	$\cos x = \frac{1}{2}$, then $x =$	S-b S-	/~7	
	(A) $\pi/6$ (B) $\pi/4$	(C) $\pi/3$ (D) τ	$\frac{1}{12}$	
8	Sin ($\cos^{-1}\sqrt{3}/2$) =			
	(A) $\pi/6$ (B) $\pi/3$	(c) $\frac{2}{\sqrt{3}}$ (D) $\frac{1}{3}$	<i>b</i> .	
9	1 is not nu	$\frac{1}{\sqrt{3}}$		
	(A) Odd (B)	/	(D) Rational	
10		of complex number (0,1)	(D) Hational	
	(A) (O, -1) (B)	(-1,0) (C) (1,0)	(D) (0,1)	
11	Set G is closed and as	sociative with respect to bir	nary operation, then set	G is called
12		Semi-Group (C) Mono	oid (D) Group	
14	Disjunction of two sta		* (2)	
13	(A) p A q (B) p	$\bigvee q \qquad (6) p \to q$	(D) $p \leftrightarrow q$	
13	(A) $\{$ $\}$ (B) $\{$ 0	$x \in N \land x + 4 = 0$ is	(D) (O 4)	
14	A square matrix A is s		(D) {0,4}	
	(A) A ^t (B) - A	Pa.	(D) - A	
15	If order of matrix A is	2 x 5 and order of B is 5		;
	(A) 5×2 (B) 76	v(5) / 7 (C) 7 v 2	(D) 2 x 7	
16	α , β are roots of λ	$+2x+1 = 0$, then $\alpha^2 + \beta$	2 =	
17	(A) 8 (B) 4	(C) -2 (ity, then $(1 + \omega + \omega^2)^2 =$	(D) 2	
17	ω is cube root of ur	ity, then $(1 + \omega + \omega^2)^2 =$ (C) 0	(0) 4	
10	(A) ω (B) ω	(C) 0	(D) 1	
18	$\frac{2}{x^2 - 1} = \frac{1}{x - 1} + \frac{B}{x + 1}$	then value of B is		
- 1	(A) T (B) $-T$	(C) 2	(D) -2	
19	Sum the series $1+\frac{9}{10}$	+ $\frac{61}{100}$ +		
	(A) 10 (B) 9	(C) 9/10	(D) $\frac{10}{}$	*
20		whose general term is $a_n = 1$	10/ 9	
	'^\ 4 (B) -4	IC) 5	(D) -5	
	13 (Obi) - 1 st Δ	(C) 5 nnual 2024 SEQUEI	NCF - 4 I DADED C	ODE6107 \
	TO (ON)) - I M	MAGI 2024 SEQUE	TAPER C	ODE 013/)
			1)	

NATHEMATICS GROUP: FIRST

SUBJECTIVE PART

TIME: 2 HRS 30 MINUTES

MARKS: 80

SECTION-I

DGK-1-24

QUE	STION NO. 2 Write short answers any Eight (8) of the following
i	Simplify $(7, 9) + (3, -5)$
ii	Find the multiplicative inverse of (-4 ,7)
III	$\forall z \in C$, prove that $z.\overline{z} = z ^2$
iv	Simplify i ⁻¹⁰
V	Write the power set of { 9 , 11}
vi	Construct the truth table for ($p \land \sim p$) $\rightarrow q$
vii	Find x and y if $\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$
viii	If A and B are square matrices of the same order, then explain why in general
	$(A+B)^2 \neq A^2 + 2AB + B^2$
ix	Without expansion show that $\begin{vmatrix} 6 & 7 & 8 \\ 3 & 4 & 5 \\ 2 & 3 & 4 \end{vmatrix} = 0$
х	Solve the equation x^2 - $2x$ - $899 = 0$ by completing the square
хi	Evaluate $\omega^{28} + \omega^{29} + 1$
xii	Find the condition that one root of equation $x^2 + px + q = 0$ is double the other.

QUESTION NO. 3 Write short answers any Eight (8) of the following

16

QUE3	TION NO. 5 Write Short answers any Eight (a) of the following
i	Define an identity
, ii	Change $\frac{6x^3+5x^2-7}{2x^2-x-1}$ in to proper fraction
iii	Find the next two terms 1, 3, 7, 15, 31,
iv	If $a_{n-3} = 2n-5$, find the nth term of the sequence
V	Show that the reciprocals of the terms of the geometric sequence a_1 , a_1r^2 , a_1r^4 ,
vi	Find A.M between $x-3$ and $x+5$
vii	Find the value of n when ${}^{n}P_{4}$: ${}^{n-1}P_{3} = 9:1$
viii	Find the value of n when ${}^{n}C_{10} = \frac{12 \times 11}{2!}$
ix	Determine the probability of getting 2 heads and 2 tails when a coin is tossed four times
х	Prove $1+4+7+\dots+ (3n-2)=\frac{n(3n-1)}{2}$
хi	Calculate by means of Binomial theorem (0.97) ³
xii	Expand $(8 - 5x)^{-2/3}$ up to four terms.

QUESTION NO. 4 Write short answers any Nine (9) of the following

QUES	HOW NO. 4 Write short answers any time (5) of the tenesting
i	If $tan\theta = \frac{8}{15}$ and terminal arm of the angle is in the III quadrant, find the value of $sin\theta$ and $cos\theta$
ii	Prove that $\sec^2 \theta - \csc^2 \theta = \tan^2 \theta - \cot^2 \theta$
iii	If α , β , γ are angles of a triangle ABC, Prove that $\tan(\alpha + \beta) + \tan \gamma = 0$
iv	Find value of sec 75°, without using tables
v	Prove that $\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} = 0$
vi	Write the domain and range of $y = \tan x$
vii	Find the period of $\csc 10x$
vili	Draw the graph of $y = \sin \frac{x}{2}$ for $0 \le x \le 2\pi$
ix	Find the smallest angle of the triangle ABC , when $a=37.34$, $b=3.24$, $c=35.06$
x	Find area of triangle ABC, if $a = 18$, $b = 24$, $c = 30$
xi	Prove that $r r_1 r_2 r_3 = \Delta^2$
xii	Without using calculator, show that $2 \cos^{-1} \frac{4}{5} = \sin^{-1} \frac{24}{25}$
xiii	Find the solution of equation $\csc\theta=2$ which lies in $[0,2\pi]$

SECTION-II

Note: Attempt any Three questions from this section

10 x 3 = 30

For what values of m, will the roots of the equation
$x^2 - 2(1+3m)x + 7(3+2m) = 0$ be equal
Solve the system linear equations by Cramer's Rule
$2x_1 - x_2 + x_3 = 8$
$x_1 + 2x_2 + 2x_3 = 6$
$x_1 - 2x_2 - x_3 = 1$
1
Resolve into partial fractions $\frac{1-ax(1-bx)(1-cx)}{(1-ax)(1-bx)(1-cx)}$
If $y = \frac{2}{3}x + \frac{4}{9}x^2 + \frac{8}{27}x^3 + \dots$ and if $0 < x < \frac{3}{x}$, then show that $x = \frac{3y}{2(1+y)}$
Prove that ${}^{n-1}C_r + {}^{n-1}C_{r-1} = {}^nC_r$
If x is so small that its square and higher powers can be neglected, show that
1-x 3
$\frac{1-x}{\sqrt{1+x}} \approx 1 - \frac{3}{2}x$
Show that $\cos 20^\circ \cos 40^\circ \cos 80^\circ = \frac{1}{8}$
By using $\Delta = \frac{1}{2}$ bc sin α drive the Hero's formula
If $\cot \theta = \frac{5}{2}$ and the terminal arm of the angle is in the I quad,
$\frac{2}{3\sin\theta+4\cos\theta}$
find the value of $\frac{sitto + reas}{cos\theta - sin\theta}$
Prove that $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$

GRC	UP : SECOND	11 th CLASS – 1 st Annual 2024	MARKS: 20
		OBJECTIVE	
	E. You have four	A Listing type question as Δ B C	and D . The choice which
見が経			
	the circles. Cut	ting or filling two or more circles will result in zero ma	1110 111 01.02 -
UES	TION NO. 1		
		es can be made from 6 beads 0 (C) 90 (D) 60	
	(A) 720 (B) 12	pansion of $(3 + x)^4$ is	. 7
2	$IMIGGIE LETTI III EAF I\Delta \setminus R1 \times^2 (1$	23 1 24 2 2 2 2 2 2 2 2 2	
3	One degree is equa	I to radian	
	(A) $\frac{180}{}$ (B)	$\frac{\pi}{180}$ (C) $\frac{\pi}{90}$ (D) π	,
4	$\cot (90 - \alpha) =$		
•	(A) $tan \alpha$ (B)	$tan \alpha$ (C) $cot \alpha$ (D) - $cot \alpha$	* * * * * * * * * * * * * * * * * * *
5	Period of sin x/3 is	(0) 6 - (0) 2 #	,
20		$\pi/3$ (C) 6π (D) 3π	
6	$\cos \alpha/2 = \dots$	s(s-h) $s(s-a)$ $s(s-b)$	
- 1	(A) $\frac{s(s-a)}{bc}$	B) $\frac{s(s-b)}{ac}$ (C) $\sqrt{\frac{s(s-a)}{bc}}$ (D) $\sqrt{\frac{s(s-b)}{ac}}$	
	$sec(cos^{-1}\frac{1}{2}) =$		
'	(A) 1/2 (B) 2	(C) $\pi/3$ (D) $\pi/6$	
8	If $\cos x = -\sqrt{3}/2$,	then value of x is	
	(A) $\frac{5\pi}{}$ (B) $\frac{\pi}{}$	(C) $\frac{\pi}{3}$ (D) $-\pi/3$	
9	$a < b \Rightarrow -a > -b$	a b∈R property used is	(=) = ()
9	(A) Transitive	(B) Additive (C) Multiplicative	(D) Trichotomy
10	If $Z = 1 - i$, then	Z =	
	(A) 2 (B) -2	(C) $\sqrt{-2}$ (D) $\sqrt{2}$	w.
11	A and B are disjoir	it sets then B) $A \cup B = \emptyset$ (C) $A - B = \emptyset$ (D) $B - A = \emptyset$)
	Tabular form of {	$x \mid x \in E \land 2 < x \le 4\}$	3
12	(1) 12 3 4}	(B) {2 4} (C) {4} (D) { \(\psi \) }	
13	The set A has me	ements. Number of elements in power set of A	
	(A) 2 ^{m-1} (B)	(C) 2"" (D) 2"	
14	Rank of $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	S	
	(A) Zero (B)	1 (C) -1 (D) 2	- 10 m
15	Determinant of [5] is	
	(A) Zero (B)	Not possible (C) -5 (D) 5 of $ax^2 - bx + c = 0$, then $\alpha + \beta =$	
16	α , β are roots	b $(C) \stackrel{C}{=} (D) \stackrel{C}{=}$	le le
	(A) - (B)	$\frac{b}{a}$ (C) $\frac{c}{a}$ (D) $-\frac{c}{a}$ -2x+2 is divided by x-1, then remainder is	
17			
	(A) -1 (B)	of $\frac{x}{(x-1)(x+2)} = \frac{1}{3(x-1)} + \frac{B}{x+2}$, then value of B is	
18		(x-1)(x+2) = 3(x-1) + x+2	
	(A) -3/2 (B)	3/2 (C) 2/3 (D) -2/3 (tic means between a and b is	
19	Sum of n-arithma	$(C) (a+b) \qquad (D) n(\frac{a+b}{a})$	
	(A) $\frac{a+b}{2}$ (B)	$n(a+b)$ (C) $(a+b)$ (D) $n\left(\frac{a+b}{2}\right)$	
20		uence 7,9,12,ls 5 (C) 16 (D) 18	
L	(A) 14 (B) 1	1 st Annual 2024 SEQUENCE – 4 (PAP	PER CODE - 6198)
	117 (Obj) –	1 Alliudi 2024 SEQUENCE 4 (1711	

11th CLASS – 1st Annual 2024

ATHEMATICS
GROUP: SECOND

SUBJECTIVE PART

TIME: 2 HRS 30 MINUTES

MARKS: 80

SECTION-I

QUESTION NO. 2. Write short answers any Eight (8) of the following

Dak-2-24

16

i	Simplify (5, -4) (-3, -2)			
iĭ	Separate into real and imaginary parts $\frac{2-7i}{4+5i}$			
iii	Prove that \vec{Z} = Z if Z is real			
iv	Simplify $(a + b i)^2$			
V	Write two proper subsets of { a , b , c }			
vi	Show that $(p \land q) \rightarrow p$ is a tautology			
vii	Find x and y if $\begin{bmatrix} 2 & 0 & x \\ 1 & y & 3 \end{bmatrix} + 2 \begin{bmatrix} 1 & x & y \\ 0 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 4 & -2 & 3 \\ 1 & 6 & 1 \end{bmatrix}$			
viii	Find the matrix X if $\begin{bmatrix} 5 & 2 \\ 2 & 1 \end{bmatrix}$ X = $\begin{bmatrix} 2 & 1 \\ 5 & 10 \end{bmatrix}$			
ix	-2 -2 1			
х	Evaluate $\omega^2 + \omega^2 + 1$			
хi	Use remainder theorem to find the remainder when $x^2 + 3x + 7$ is divided by $x + 1$			
vii	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$			

QUESTION NO. 3 Write short answers any Eight (8) of the following

1

Define partial fraction resolution	
Suppose $\frac{7x+25}{(x+3)(x+4)} = \frac{A}{x+3} + \frac{B}{x+4}$ Find the values of A and B	
If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in G.P. Show that the common ratio is $\pm \sqrt{\frac{a}{c}}$	
Show that $G^2 = AH$ if $a = 2i$, $b = 4i$	
Find the number of the diagonals of a 6-sided figure	
	. •
	Define partial fraction resolution

· (P.T.O)

QUESTION NO.	4	Write short answers any	Nine	(9)	of the	following
--------------	---	-------------------------	------	-----	--------	-----------

QUES	STION NO. 4 Write short answers any Nine (9) of the following	18
i	Find ℓ , when θ = 65° 20 $^{\prime}$, r = 18 mm	
ii	Verify that $2 \sin 45^\circ + \frac{1}{2} \csc 45^\circ = \frac{3}{\sqrt{2}}$	
iii	Without using the tables , find the value of sec (- 300)	
iv	Prove that $\frac{\cos 8^o - \sin 8^o}{\cos 8^o + \sin 8^o} = \tan 37^o$	
V	Prove that $1 + \tan \alpha \tan 2 \alpha = \sec 2 \alpha$	
vi	Write down the domain and range of sin x	
vii	Find the period of $\cot \frac{x}{2}$	
viii	Draw the graph of $y = \cos x$ for $0 \le x \le 360^{\circ}$	
ix	What is difference between right angle triangle and oblique triangle	
х	Find the area of the triangle ABC , if $a = 200$, $b = 120$, $\gamma = 150^{\circ}$	
хi	Find the radius of in-circle if $a = 13$, $b = 14$, $c = 15$	
xii	Without using calculator, show that $tan^{-1} \frac{5}{12} = sin^{-1} \frac{5}{13}$,
xiii	Solve the equation $\sin x + \cos x = 0$	

SECTION-II

Note: Attempt any Three questions from this section

 $10 \times 3 = 30$

	internal filter decisions from the second se
Q.5- (A)	Solve the equation $\sqrt{5x^2 + 7x + 2} = \sqrt{4x^2 + 7x + 18} = x - 4$
(B)	Use matrices to solve the following system of equation
*	$2x_1 + x_2 + 3x_3 = 3$
	$x_1 + x_2 - 2x_3 = 0$
	$-3x_1 - x_2 + x_3 = -4$
Q.6- (A)	\mathbf{x}^{2}
Q.0 (A)	Resolve the following into partial fractions $\frac{x^2}{(x-2)(x-1)^2}$
(B)	Find n so that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be the A.M. between a and b
Q.7-(A)	A natural number is chosen out of the first fifty natural numbers. What is the probability
	that the chosen number is multiple of 3 or 5 ?
(B)	Expand $\left(\frac{x}{2} - \frac{2}{x^2}\right)^6$ by using binomial theorem
Q.8-(A)	Show that $\cos 20^\circ \cos 40^\circ \cos 80^\circ = \frac{1}{8}$
(B)	The sides of triangle are $x^2 + x + 1$, $2x + 1$ and $x^2 - 1$
	Prove that the greatest angle of the triangle is 120°
Q.9-(A)	Prove that : $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta$
	Where θ is not an odd multiple of $\frac{\pi}{2}$
(B)	Prove that: $\cos^{-1} A + \cos^{-1} B = \cos^{-1} [AB - \sqrt{1 - A^2} \sqrt{1 - B^2}]$