Roll No.						
MÂTHEI Time: 30		nediate Part-I , Class 11 OBJECTIVE Code: 6197	6 (1st A 324-IV) PAPI	ER: I GROUP - I Marks: 20		
Note:	correct, fill that circle in fro	each objective type question ont of that question number. will result in zero mark in t	Use marker or pen to fill to			
1- 1-	A square matrix A is sy (A) –A		$(C)\overline{A}$	(D) $-\overline{A}$		
2-	If $\sin \theta > 0$ and $\sec \theta > 0$), then terminal arm of θ (B) II	lies in quadrant (C) III	(D) IV		
3-	Conditional equation 3x	x - 1 = 0 is true only if				
	(A) x = 3	(B) $x = -3$	$(C) x = \frac{1}{3}$	$(D) x = -\frac{1}{3}$		
4-	Reference angle always (A) I	lies in quadrant (B) II	(C) III	(D) IV		
5-	$\cos\left(\sin^{-1}\frac{1}{\sqrt{2}}\right) =$		C C			
	$(A) \frac{1}{\sqrt{2}}$	(B) 1	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{4}$		
6-	The value of the determ	inant $\begin{vmatrix} 1 & 12 & 25 \\ 0 & 3 & 15 \\ 0 & 0 & 8 \end{vmatrix}$	W ₂			
	(A) 0	(B) 1	(C) 8	(D) 24		
7-	$Sin(\pi - \theta) = $ (A) $Sin\theta$	(B) –Sinθ	(C) Cosθ	(D) –Cosθ		
8-	If "n" is even, then middle term of $(a + b)^n$ is					
	(A) $\left(\frac{n}{2}-1\right)^{th}$ term	(B) $\left(\frac{n}{2}+1\right)^{th}$ term	(C) $\left(\frac{n}{2}\right)^{\text{th}}$ term	(D) $\left(\frac{n}{2}-2\right)^{th}$ term		
9-	When $3x^4 + 4x^3 + x - 5$ (A) -7	is divided by $x + 1$, then (B) -6	remainder is (C) 6	(D) 7		
10-	Converse of the condition (A) $q \rightarrow p$	onal $p \to q$ is (B) $\sim q \to \sim p$	$(C) \sim p \rightarrow \sim q$	(D) $p \rightarrow \sim q$		
11-	Multiplicative inverse of	f-3i is				
	(A) 3 <i>i</i>	(B) $\frac{1}{3}i$	(C) $-\frac{1}{3}i$	(D) -3i		
12-	$A' \cap B' =$ (A) $A' - B'$	(B) A'∪B'	(C) $(A \cap B)'$	(D) (A UB)'		
13-	In a quadratic equation a (A) real	$ax^{2} + bx + c = 0$, if $b^{2} - 4a$ (B) equal	c > 0, then roots are (C) rational	(D) irrational		
14-	20^{th} term of 1, 3, 5, (A) 38	is (B) 39	(C) 40	(D) 41		

(Turn over)

15- $\sqrt{3}$ is

(A) rational number

(B) irrational number

(C) even number

(D) odd number

 $16- r_2 =$

(A) $\frac{\Delta}{S}$

(B) $\frac{\Delta}{S-\epsilon}$

(C) $\frac{\Delta}{S-b}$

(D) $\frac{\Delta}{S-c}$

17- Factorial form of (n + 2) (n + 1)(n) is

 $(A)\frac{(n+2)!}{(n+1)!}$

(B) $\frac{(n+1)!}{(n-2)!}$

(C) $\frac{(n+2)!}{n!}$

(D) $\frac{(n+2)!}{(n-1)!}$

18- $Tan\theta$ is a periodic function of period

(A) π

(B) $\frac{\pi}{2}$

(C) $\frac{3\pi}{2}$

(D) 2π

19- Let $A=\{1,2,3\}$, then the number of its subsets is

(A) 2

(B) 3

(C) 7

(D) 8

20- If a = 2i, b = 4i, then G =

 $(A) \pm 2\sqrt{2} i$

(B) $\pm 2i$

www.taleen

(C) + 4

(D) $\pm \sqrt{6} i$

213-(IV)-1stA 324-32000

MATHEMATICS

Intermediate Part-I, Class 11th (1st A 324)

PAPER: I

GROUP - I

Time: 2:30 hours

SUBJECTIVE

Marks: 80

Note: Section-I is compulsory. Attempt any three (3) questions from Section-II.

Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

- i- Define binary operation.
- Show that the set $\{1, -1\}$ possess closure property with respect to multiplication.
- Simplify the following $(-1)^{\frac{-21}{2}}$
- Graph the number -5 6i on complex plane.
- Write the union and intersection of two sets A and B in set builder notation.
- Write down the difference between induction and deduction.

vii- Find the value of x and y if
$$\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$$

- viii- If A and B are non-singular matrices then show that $(AB)^{-1} = B^{-1}A^{-1}$
- ix- Write down two properties of determinant.
- x- Solve the equation : $x^{1/2} x^{1/4} 6 = 0$
- xi- Show that : $x^3 + y^3 + z^3 = (x + y + z)(x + \omega y + \omega^2 z)(x + \omega^2 y + \omega z)$
- xii- Show that (x-2) is a factor of $x^4 13x^2 + 36$

Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

- i- What is the difference between proper rational fraction and improper rational fraction?
- Find value of A and B if $\frac{x^2+1}{(x+1)(x-1)} = \frac{A}{x+1} + \frac{B}{x-1}$
- Which term of the A.P 5, 2, -1, is -85?
- iv- Find the sum of infinite G.P: 2, $\sqrt{2}$, 1,
- v- Sum the series: $3 + 5 7 + 9 + 11 13 + 15 + 17 19 \dots$ to 3n terms
- vi- If $\frac{1}{K}$, $\frac{1}{2K+1}$ and $\frac{1}{4K-1}$ are in harmonic sequence, find K.
- vii- How many permutations of the letters of the word PANAMA can be made, if P is to the first letter in each arrangement?
- viii- Find the number of the diagonals of a 6-sided figure.
- ix- Two dice are thrown twice. What is probability that sum of dots shown in throw is 7?
- x- Prove that the statement is true: $n! > n^2$ for n = 4, 5
- xi- Use Binomial theorem, find the value of (.98)^{1/2} up to three decimal places.
- Find the term involving a^4 in the expansion of $\left(\frac{2}{x} a\right)^9$

Write short answers to any NINE questions:

 $(2 \times 9 = 18)$

- i- Define Radian.
- ii- $\sin\theta = \frac{12}{13}$, terminal arm of the angle is in quadrant I. Find the values of Sec θ , Cos θ

iii- Prove that
$$\cos\left(\frac{\pi}{2} - \beta\right) = \sin\beta$$

(Turn Over)

iv- Prove that
$$\frac{\cos 11^{\circ} + \sin 11^{\circ}}{\cos 11^{\circ} - \sin 11^{\circ}} = \tan 56^{\circ}$$

v- Express the product $\sin 12^{\circ} \sin 46^{\circ}$ as sum or difference.

- Prove that period of tangent is π
- Find the period of 3Sinx
- Draw the graph $y = -\sin x$, $x \in [-2\pi, 2\pi]$
- Find the value of θ if $\cos\theta = 0.9316$
- Solve the right angle triangle in which $\gamma = 90^{\circ}$, $\alpha = 37^{\circ}20'$, a = 243
- Solve the triangle ABC , if $\beta = 60^{\circ}$, $\gamma = 15^{\circ}$, $b = \sqrt{6}$
- Find the value of $Cos^{-1}(1/2)$

trignometric functions.

(b) Prove that $\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{3}{5} + \tan^{-1} \frac{8}{19} = \frac{\pi}{4}$

Solve the equation : $\sin^2 x + \cos x = 1$

(a) If $\tan \theta = -\frac{1}{3}$, and terminal arm of angle θ is in quadrant II. Find the values of remaining

213-1st A 324-32000

5

5

Roll No.									
	EMATICS In 10 Minutes	ntermediate Part-I , C OBJE	Class 11 th (1 st A 324- CTIVE : 6198	7	GROUP: II Marks: 20				
Note:	correct, fill that circle i	for each objective type q n front of that question n cles will result in zero man	uestion as A, B, C and I umber. Use marker or i	D. The choice which yo	ou think is utting or				
1- 1-	a, b and c are in A.		•		/				
2-	(A) 2a = b - c	(B) $2b=a+c$ expansion of $(1+x)^{n-1}$		(D) $2a = b + c$	·				
	(A) n + 2	(B) $n + 1$	(C) n	(D) n –1					
3-	H is Harmonic mean	between a and b then	H =						
	(A) $\frac{2ab}{a+b}$	(B) $\frac{a+b}{2ab}$	(C) 2ab	(D) $\frac{a-b}{2ab}$					
		2ab	$\frac{(C)}{a-b}$	$\frac{(D)}{2ab}$	1				
4-	$Cos(tan^{-1}0) = \underline{\hspace{1cm}}$	A Marine And a separate state of							
	(A) 0	(B) 1	(C) -1	(D) ∞					
5-	In $\frac{p(x)}{q(x)}$, degree of p	(x) is less than degree	of q(x), then fraction	s	• 1				
	(A) proper	(B) improper	(C) combined	(D) partial					
6-	Set having no proper								
	(A) { }	(B) { 1 }	(C) $\{1, 2\}$	$(D) \{1,2,3\}$	}				
7-		anumbe		G	E.				
	(A) prime	(B) rational	(C) jrrational	(D) integer					
8-	Sum of roots of equa								
	(A) 6	(B) -6	(C) 5	(D) -5					
9-	$^{n}C_{8}=^{n}C_{12}$, then valu	e of n is							
	(A) 8	(B) 12	(C) 16	(D) 20					
10-	Proposition	is called bicondition	onal		*				
	$(A) p \rightarrow q$	(B) $p \leftrightarrow q$	(C) p \(\text{q} \)	(D) p v q					
11-	$Sinx = \frac{1}{2}, then x = $	70-/							
	2 /								
	(A) $\frac{\pi}{6}$	(B) $\frac{\pi}{4}$	(C) $\frac{\pi}{2}$	\sim (D) $\frac{\pi}{}$					
12-	3								
12-									
	(A) $\frac{\pi}{2}$	(B)/π	(C) 2π	(D) $\frac{2\pi}{3}$					
13-	$3^{2x} + 4.3^{x} + 4 = 0$ is	equation.		,					
	(A) cubic (B) radical (C) reciprocal (D) exponential								
14-	Period of tanx is	*	. , .	. , 1					
	(A) $\frac{\pi}{2}$	(B) 3π	(C) 2π	(D) π					
15-	$(-1)^{-\frac{21}{2}} = \dots$	*							
	(A) 1	(B) -1	(C) i	(D) - <i>i</i>					
16-	If $\begin{bmatrix} x & 1 \\ 3 & 1 \end{bmatrix}$ is singular, to	hen x =							
	(A) -3/	(B) 3	(C) 1	(D) -1					
17-		es of cyclic quadrilatera	al is						
	(A)/90	(B) 120	(C) 180	(D) 270					
18-	The matrix [1 2 3] i			* e					
20.00	(A) square	(B) unit	(C) null	(D) row					
19-	Co-ratio of Cosine is			1					
20 /	(A) sine	(B) cosine	(C) tangent	(D) secant					
20-/	If $A = \{1, 2, 3\}$ and I	$B = \{4, 5\}$, which is n							
	(A) (1, 4)	(B) (2, 4)	(C)(3,4)	(D)(4,3)					

214-(IV)- 1stA 324-31000

Intermediate Part-I, Class 11th (1stA 324) PAPER: I **TEMATICS** GROUP: II Time: 2:30 hours Note: Section-I is compulsory. Attempt any three (3) questions from Section-II. SUBJECTIVE Marks: 80 Write short answers to any EIGHT questions: $(2 \times 8 = 16)$

Write trichotomy and transitive properties of inequalities of real numbers.

Simplify $(2, 6) \div (3, 7)$

Find the modulus of 3 + 4i

Express the complex number $1 + i\sqrt{3}$ in polar form

v- Write inverse , converse and contrapositive of the conditional $\sim p \rightarrow \sim q$

vi- Define groupoid.

vii- If $A = \begin{bmatrix} i & 0 \\ 1 & -i \end{bmatrix}$, show that $A^4 = I_2$

viii- Without expansion verify that $\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \gamma + \alpha & 1 \\ \gamma & \alpha + \beta & 1 \end{vmatrix} = 0$

If A and B are non-singular matrices, then show that $(AB)^{-1} = B^{-1}A^{-1}$

Find the three cube roots of -27

Use the factor theorem to determine if x - 1 is a factor of $x^2 + 4x - 5$

xii- If α , β are the roots of $3x^2 - 2x + 4 = 0$, find the value of $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$

Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

i- Resolve into Partial Fractions $\frac{3x}{(x-1)(x+2)}$

ii- Define the term Partial Fraction.

iii- Write the first four terms of the sequence, if $a_n - a_{n-1} = n+2$, $a_1 = 2$

iv- If 5, 8 are two A.Ms between a and b, find a and b.

Find the sum of infinite Geometric Series $\frac{9}{4} + \frac{3}{2} + 1 + \frac{2}{3} + \dots$

vi- Find the 8th term of H.P; $\frac{1}{2}$, $\frac{1}{5}$, $\frac{1}{8}$,......

vii- Prove that ${}^{n}C_{r} = {}^{n}C_{n-r}$

viii- Find the value of n when ${}^{11}P_n = 11.10.9$

What is the probability that a slip of numbers divisible by 4 are picked from the slips bearing numbers 1,2,3,, 10?

Prove that the inequality $n^2 > n + 3$ for n = 3, 4

xi- Calculate $(9.9)^5$ by means of Bionomial Theorem. xii- Expand $(1-x)^{1/2}$ upto 4 terms.

Write short answers to any NINE questions:

 $(2 \times 9 = 18)$

i- Find r when l = 5cm, $\theta = \frac{1}{2}$ radian

ii- Evaluate $\frac{\tan\frac{\pi}{3} - \tan\frac{\pi}{6}}{1 + \tan\frac{\pi}{3} \cdot \tan\frac{\pi}{6}}$

iii- Prove that $Sin(\alpha + \beta) Sin(\alpha - \beta) = Cos^2\beta - Cos^2\alpha$

(Turn Over)

Prove that $\frac{\cos 8^{\circ} - \sin 8^{\circ}}{\cos 8^{\circ} + \sin 8^{\circ}} = \tan 37^{\circ}$ v- Express as product : $\cos 7\theta - \cos \theta$ Define Periodicity. Find period of $3\cos\frac{x}{5}$ Draw graph of Sinx when $x \in [0, \pi]$ viii-Find a and c for the right angle triangle ABC, when $\alpha = 58^{\circ}13'$, b = 125.7, $\gamma = 90^{\circ}$ ix-A vertical pole is 8m high and length of its shadow is 6m. What is angle of elevation of the sum at that moment? Solve the triangle ABC if b=125 , $\gamma=53^o$, $\alpha=47^o$ Show that $tan(Sin^{-1}x) = \frac{x}{\sqrt{1-x^2}}$ Solve the trignometric equation $Sinx = -\frac{\sqrt{3}}{2}$ 60.com **SECTION-II** Solve the system of linear equations by Cramer's Rule: 2x + 2y + z = 33x - 2y - 2z = 15x + y - 3z = 2**(b)** Show that the roots of $(mx + c)^2 = 4ax$ will be equal if $c = \frac{a}{m}$, $m \neq 0$ (a) Resolve $\frac{x^2 + x - 1}{(x + 2)^3}$ into partial fractions. The sum of an infinite Geometric Series is 9 and the sum of the squares of its terms is $\frac{81}{5}$. Find the series. Two dice are thrown. E₁ is the event that the sum of their dots is an odd number and E₂ is the event that 1 is the dot on the top of the first die. Show that $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$ **(b)** Find the term independent of x in expansion of $\left(\sqrt{x} + \frac{1}{2x^2}\right)^{10}$

5-

- 8- (a) Prove that $\sin \frac{\pi}{9} \sin \frac{2\pi}{9} \sin \frac{\pi}{3} \sin \frac{4\pi}{9} = \frac{3}{16}$
 - **(b)** Show that $r_2 = 4R \cos \frac{\alpha}{2} \sin \frac{\beta}{2} \cos \frac{\gamma}{2}$
- 9- (a) Find x if $\tan^2 45^\circ \cos^2 60^\circ = x \sin 45^\circ \cos 45^\circ \tan 60^\circ$ 5
 - **(b)** Prove that $\sin^{-1} \frac{4}{5} + \sin^{-1} \frac{5}{13} + \sin^{-1} \frac{16}{65} = \frac{\pi}{2}$

5

5

5

5

5

5