s				
Roll N			To be filled in by the	
	HEMATICS (Ac PER – I (Objective Type)	cademic Sessions 2020 – 224-1 st Annual-(INTER	2022 to 2023 – 2025 R PART – I) Time	Allowed: 30 Minute
	, J	GROUP – I	Maxi	mum Marks: 20
Note:	Four possible answers A, B,	PAPER CODE = 67 C and D to each question as		
	fill that circle in front of th	nat question with Marker or	Pen ink in the answer-	
1-1	two or more circles will resu	ilt in zero mark in that ques	tion.	
	Rank of the matrix 0	is:		
	-1			ng garage Ala
	(A) 0	(B) 1	·(C) 2	(D) 3
			4	
2	The fraction $\frac{x+1}{x^2+2}$ is	:		
	1		(CV) (Identity	(D) Mixed
3	(A) Improper fraction The multiplicative inventor		(C) Identity	(D) Wilked
3			(6) (1 0)	(D) (0 1)
	(A) (1,0)	(B) (0,1)	(C) $(-1,0)$	(D) (0,-1)
4	The roots of $2x^2 - 7x + 3$	3 = 0, are:	~Q.	
	(A) Equal	(B) Complex	(C) Irrational	(D) Rational
5	The value of $(-i)^9$ is:			
	(A) -1	(B) 1	(C) i	(D) - i
6	If A is a square matrix of	of order 3 and $ A = 2$,	then $ 2A = :$	
	(A) 16	(B) 8	(C) 6	(D) 2
7	The number of elements	s of the power set of A	$= \{ a, \{ b, c \} \}$ are	:
	(A) 2	(B) 4	(C) 6	(D) 8
8	If $A \subseteq B$, then:			
	(A) $A \cup B = A$	(B) $A \cap B = B$	(C) $B \cup A = A$	(D) $A \cup B = B$
9	If ω is a cube root of u	nity, then value of (1+a	$(\omega - \omega^2)^3$ is:	
	(A) 8ω	(B) $8\omega^2$	(C) -8	(D) 8
10	The converse of $\sim p \rightarrow$	q is:		
	(A) $p \rightarrow q$	(B) $p \rightarrow \sim q$	(C) $\sim q \rightarrow p$	(D) $q \rightarrow \sim p$
11	$\cos 2\theta =$:			
	(A) $1-\sin^2\theta$	(B) $1-2\sin\theta$	(C) $1-2\sin^2\theta$	(D) $2\sin^2\theta - 1$
12	The G.M. between $\frac{1}{a}$	and $\frac{1}{h}$ is:		
	(1)	(P) + 1	(C) $+$ 1	(D) <i>ab</i>
	(A) $\pm \sqrt{ab}$	(B) $\pm \frac{1}{ab}$	(C) $\pm \sqrt{\frac{1}{ab}}$	(D) ab

1-13	If $\cos x = -\frac{\sqrt{3}}{2}$, then the	refere	ence angle is:			·	· · · · · · · · · · · · · · · · · · ·
	(A) $\frac{\pi}{3}$	(B)		(C)	$-\frac{\pi}{3}$	(D)	$-\frac{\pi}{6}$
í4	If $\sin \theta < 0$ and $\cot \theta > 0$, ther	θ lies in quadran	t :		·*	
	(A) IV	(B)	III	(C)	II	(D)	I
15	The value of $\sin^{-1}(\cos\frac{\pi}{6})$	-) is e	equal to :				
	(A) $\frac{\pi}{3}$	(B)	$\frac{\pi}{6}$	(C)	$\frac{\pi}{2}$	(D)	$\frac{3\pi}{2}$
16	The relation between A ,	G, H	is:				
	(A) $G^2 = AH$	(B)	$H^2 = AG$	(C)	$A^2 = HG$	(D)	A > G < H
17	The number of terms in	the ex	pansion of $(a+x)$	ⁿ is	, G		
	(A) $n-1$	(B)			n + 2	(D)	n + 1
18	$\sqrt{\frac{s(s-c)}{ab}} = :$ (A) $\cos \frac{\alpha}{2}$		em				
	(A) $\cos \frac{\alpha}{2}$	(B)	$\sin \frac{\alpha}{2}$	(C)	$\cos\frac{\gamma}{2}$	(D)	$\sin\frac{\gamma}{2}$
19	A die is thrown, what is	the pr	obability to get 3 d	ots :			
	(A) $\frac{1}{6}$	(B)	$\frac{1}{3}$	(C)	1/2	(D)	2/3
20	The period of $\cos \frac{x}{6}$ is	;					
	(A) 2π	(B)	3π	(C)	6π	(D)	12π

24-224-I-(Objective Type)- 11875 (6195)

Koll No	
(Academic Sessions 2020 – 2022 to 2023 – 2025)	
PAPER – I (Essay Type) 224-1 st Annual-(INTER PART – I) GROUP – I Time Allowed: 2.30 ho Maximum Marks: 80	urs
SECTION - I Write short answers to any EIGHT (8) questions:	
(i) Write the symmetric property and transitive property of equality of the real numbers.	16
(ii) Show that $z\bar{z} = z ^2 \ \forall z \in C$	
(iii) Find out real and imaginary parts of $(\sqrt{3}+i)^3$	
(iv) Find the modulus of $1-i\sqrt{3}$	
(v) Construct truth table for $(p \land \sim p) \rightarrow q$	
(vi) If a, b are elements of a group G, then show that $(ab)^{-1} = b^{-1}a^{-1}$	
(vii) If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find the values of a and b .	
(viii) If A and B are square matrices of the same order, then explain why in general $(A-B)^2 \neq A^2 - 2AB + B^2$.	
(ix) Define skew-hermitain matrix.	
(x) Evaluate $\omega^{28} + \omega^{29} + 1$	
(xi) When $x^4 + 2x^3 + kx^2 + 3$ is divided by $x - 2$, the remainder is 1. Find the value of k.	
(xii) If α , β are the roots of $x^2 - px - p - c = 0$, prove that $(1+\alpha)(1+\beta) = 1-c$	
3. Write short answers to any EIGHT (8) questions:	16
(i) Define partial fractions.	
(ii) If $\frac{7x+25}{(x+3)(x+4)} = \frac{4}{x+3} + \frac{B}{x+4}$, then find B.	
(iii) Find the number of terms in A.P if $a_1 = 3$; $d = 7$ and $a_n = 59$	
(iv) If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in G.P., show that common ratio is $\pm \sqrt{\frac{a}{c}}$	
(v) Find the sum of $\frac{9}{4} + \frac{3}{2} + 1 + \frac{2}{3} + \dots = -\infty$	
(vi) If 5 is H.M. between 2 and b, then find b.	
(vii) Write $\frac{(n+1)(n)(n-1)}{3.2.1}$ in factorial form.	
(viii) Prove that ${}^{n}P_{r} = n \cdot {}^{n-1}P_{r-1}$	
(ix) Determine probability of getting 2 heads in two successive tosses of balanced coin.	
(x) Show that $8.10^n - 2$ is divisible by 6 for $n = 1$ and $n = 2$	
(xi) Find the 6 th term in the expansion of $\left(x^2 - \frac{3}{2x}\right)^{10}$	

(xii) Using binomial theorem, find value of $\sqrt[3]{65}$ correct to three places of decimal.

(Turn Over)

4. Write short answers to any NINE (9) questions :	18
(i) Verify $\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$ for $\theta = 45^\circ$	
(ii) Prove the identity $\frac{1+\cos\theta}{1-\cos\theta} = (\cos ec\theta + \cot\theta)^2$	
(iii) If α , β and γ are the angles of triangle ABC then prove that $\tan(\alpha + \beta) - \tan \gamma = 0$	
(iv) Express as product $\cos 6\theta + \cos 3\theta$	
(v) Prove that $1 + \tan \alpha \tan 2\alpha = \sec 2\alpha$	
(vi) Prove that period of cosine is 2π	
(vii) Find the period of $\cos ec 10x$	
(viii) Draw the graph of the function $y = \cos x$, $xt \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$	
(ix) Write formula for $\cos \frac{\alpha}{2}$ and $\cos \frac{\gamma}{2}$	
(x) Measure of two sides of a triangle are in the ratio 3: 2 and angle including these sides is 57°. Find the remaining two angles.	
(xi) Define circum centre.	
(xii) Define circum centre. (xii) Without using calculator / table, show that $2\cos^{-1}\frac{4}{5} = \sin^{-1}\frac{24}{25}$ (xiii) Solve the trigonometric equation $\cos ec^2\theta = \frac{4}{3}$	
(xiii) Solve the trigonometric equation $\cos ec^2\theta = \frac{4}{3}$	
SECTION - II	
Note: Attempt any THREE questions.	
5. (a) Show that $\begin{vmatrix} a+\lambda & b & c \\ a & b+\lambda & c \\ a & b & c+\lambda \end{vmatrix} = \lambda^2 (a+b+c+\lambda)$	5
(b) If the roots of the equation $x^2 - px + q = 0$ differ by unity, prove that $p^2 = 4q + 1$	5
6. (a) Resolve $\frac{1}{(x-3)^2(x+1)}$ into partial fractions	5
(b) Find n so that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be the A.M. between a and b	5
7. (a) Two dice are thrown. E_1 is the event that the sum of their dots is an	
odd numbers and E_2 is the event that 1 is the dot on the top of the first die.	_
Show that $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$	5
(b) If $y = \frac{1}{3} + \frac{1.3}{2!} \left(\frac{1}{3}\right)^2 + \frac{1.3.5}{3!} \left(\frac{1}{3}\right)^3 +$ prove that $y^2 + 2y - 2 = 0$	5
8. (a) Reduce $\sin^4 \theta$ to an expression involving only function of multiple of θ , raised to the first power.	5
	5
(b) Prove that $\Delta = r^2 \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$	3
9. (a) Find the values of all the trigonometric functions of the angle -675° .	5
(b) Prove that $\sin^{-1}\frac{5}{13} + \sin^{-1}\frac{7}{25} = \cos^{-1}\frac{253}{325}$	5
24-224-I-(Essay Type)-47500	

Roll	NIA
KOH	NU

(To be filled in by the candidate)

MATHEMATICS

(Academic Sessions 2020 – 2022 to 2023 – 2025)

Q.PAPER – I (Objective Type)

224-1st Annual-(INTER PART – I)

Time Allowed: 30 Minutes

GROUP - II

Maximum Marks: 20

PAPER CODE = 6196

LHR-2-24

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

1-1	If A is a matrix of order 2 × 3 then order of 4 ^t A is:						
	If A is a matrix of order 2×3 , then order of $A^t A$ is:						
	(A) 3 × 3	(B) 2×3	(C) 3 × 2	(D) 2 × 2			
2	The equation $x(x-1) = x^2 - x$ is:						
	1 2	(B) Identity	(C) Exponential	(D) Radical			
3	The multiplicative inv	erse of $-i$ is:					
	(A) (1,-1)	(B) $(0, -1)$	(C) (0,1)	(D) (1,0)			
4	If ω is a cube root of	Funity, then $(1+\omega+\omega^2)$) ⁸ = :				
	(A) 0	(B) 256	(C) 256ω	(D) $256\omega^2$			
5	Which of the followin	g sets has closure prop	erty w.r.t. addition:				
	(A) {1}	(B) { 0 }	(C) {0,1}	(D) {1,-1}			
6	If $ A = 9$, then $ A^t $						
	(A) 81	(B) $\frac{1}{9}$	(C) – 9	(D) 9			
7	The converse of $p \rightarrow q$ is:						
	$(A) \sim p \rightarrow \sim q$	(B) $\sim q \rightarrow p$	(C) $q \rightarrow p$	(D) $p \rightarrow \sim q$			
8	If $A = \{\}$, then the power set of A is:						
		(B) {0}	(C) { }	(D) $\{\phi\}$			
9	If $4^{1+x} = 2$, then $x = :$						
	(A) 0	(B) -2	(C) $-\frac{1}{2}$	(D) $\frac{1}{2}$			
10	If $A \cap B = A$, then:						
	(A) $B \subseteq A$	(B) $A \subseteq B$	(C) $A \cup B = A$	(D) $B \cup A = A$			
11	$\sin(270^\circ + \theta) = :$						
	(A) $\sin \theta$	(B) $\cos \theta$	(C) $-\cos\theta$	(D) $-\sin\theta$			
12	Which cannot be the term of a G.P.:						
	(A) 1	(B) -1	(C) 0	(D) i			

	· · · · · · · · · · · · · · · · · · ·					
1-13	If $\sin x = -\frac{\sqrt{3}}{2}$, t	hen the reference angle	is :			
	$(A) -\frac{\pi}{6}$	(B) $\frac{\pi}{6}$	(C) $-\frac{\pi}{3}$	(D) $\frac{\pi}{3}$		
14	Which angle is qu	adrantal angle:				
	(A) 45°	(B) 60°	(C) 120°	(D) 270°		
15	With usual notation	on, $\frac{abc}{4R}$ = :				
	(A) r	(B) r_1	(C) \(\Delta \)	(D) r_2		
16	H.M. between 3	and 7 is:				
	(A) 5	(B) $\sqrt{21}$	(C) ±√21	(D) $\frac{21}{5}$		
17	The number of terms in the expansion of $(a+x)^n$ is:					
	(A) n-1	(B) n	(C) $n+2$	(D) n + 1		
18	The period of $\cos 2x$ is:					
	(Α) π	(B) 2π	(C) 4π	(D) $\frac{\pi}{2}$		
19	If $r = n$, then ${}^{n}C_{n}$.=: ***				
	(A) 0	(B) 1	(C) n	(D) n!		
20	$\sin^{-1}(0) + \cos^{-1}(0)$	= :				
	(A) 0	(B) $\frac{\pi}{2}$	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{4}$		

25-224-II-(Objective Type)- 11750 (6196)

Jil No	(To be filled in by the candidate)	
MATHEMAT PAPER – I (I	Anorth II Mayimim Marks ' All	
	ort answers to any EIGH1 (a) questions.	6
(i)	Show that $z^2 \bar{z}^2$ is a real number.	
(ii)	Find the modulus of $1-i\sqrt{3}$	
(iii)	Simplify by justifying each step $\frac{\frac{1}{4} + \frac{1}{5}}{\frac{1}{4} - \frac{1}{5}}$	
(iv)	Check the closure property w.r.t. addition and multiplication for the set $\{0, -1\}$	
(v)	Determine whether the statement $p \land \sim p$ is tautology or not.	
(vi)	Define semi-group.	
(vii)	If $A = \begin{bmatrix} 1 \\ 1+i \\ i \end{bmatrix}$, find $A(\overline{A})^t$	
(viii)	Define reduced echelon form of a matrix, with example.	
	If $A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$, verify that $(A^{-1})^t = (A^t)^{-1}$	
(\mathbf{x})	Discuss nature of roots of $9x^2 - 12x + 4 = 0$	
(xi)	Solve the equations $x^2 + y^2 = 25$, $2x^2 + 3y^2 = 6$	
(xii)	Find the condition that one root of $x^2 + px + q = 0$ is square of other.	
	nort answers to any EIGH1 (8) questions.	16
(i) (ii)	Define proper rational fraction. For the identity $\frac{1}{(x-1)(2x-1)(3x-1)} = \frac{A}{x-1} + \frac{B}{2x-1} + \frac{C}{3x-1}$ calculate the value of A.	•
(iii)		
(iv)	How many terms are there in the A.P. in which $a_1 = 11$, $a_n = 68$, $d = 3$	
(v)	Find three A.Ms between $\sqrt{2}$ and $3\sqrt{2}$.	
(vi) (vii)		
(viii)		
(ix)	a	
(x)	Calculate (9.98) ⁴ by means of binomial theorem.	
	Prove that $n! > 2^n - 1$ for $n = 4.5$	
	hort answers to any NINE (9) questions:	18
(i)	or a sixty of a sixty control on a circle of radius 14 cm by the arms of a	
(**)	Convert 54945' into radians	

(Turn Over)

- **4.** (iii) If α, β, γ are angles of triangle ABC then prove that $\cos\left(\frac{\alpha+\beta}{2}\right) = \sin\frac{\gamma}{2}$
 - (iv). Find the value of $\cos \frac{\pi}{12}$
 - (v) Express $\sin(x+30^\circ) + \sin(x-30^\circ)$ as a product.
 - (vi) Define periodic function and period of trigonometric function.
 - (vii) Find period of $\cos \frac{x}{6}$
 - (viii) Draw the graph of $y = \sin x$ from 0 to π .
 - (ix) State law of sines.
 - (x) If sides of triangle are 16, 20, 23, find its greatest angle.
 - (xi) Show that $r_1 = s \tan \frac{\alpha}{2}$
 - (xii) Find value of $\cos\left(\sin^{-1}\frac{1}{\sqrt{2}}\right)$
- (xiii) Show that $\tan \left(\sin^{-1} x\right) = \frac{x}{\sqrt{1-x^2}}$

SECTION - II

Note: Attempt any THREE questions.

5. (a) Solve the system of equations by Cramer's rule:

$$2x + 2y + z = 3$$

$$3x - 2y - 2z = 1$$

$$5x + y - 3z = 2$$

(b) If α, β roots of $x^2 - 3x + 5 = 0$ form the equation whose roots are $\frac{1 - \alpha}{1 + \alpha}$ and $\frac{1 - \beta}{1 + \beta}$

360.com

5

5

5

- 6. (a) Resolve $\frac{x^4}{1-x^4}$ into partial fractions
 - (b) The sum of an infinite geo-metric series is 9 and the sum of the squares of its terms is $\frac{81}{5}$. Find the series.
- 7. (a) Find the values of n and r when ${}^{n-1}C_{r-1}: {}^{n}C_{r}: {}^{n+1}C_{r+1} = 3:6:11$
 - (b) If x is so small that its cube and higher powers can be neglected, then show that : $\sqrt{\frac{1-x}{1+x}} \approx 1-x+\frac{x^2}{2}$
- 8. (a) Reduce $\cos^4 \theta$ to an expression involving only function of multiples of θ , raised to the first power.
 - (b) Prove that $r_3 = 4R \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \sin \frac{\gamma}{2}$
- 9. (a) Show that the area of a sector of a circular region of radius r is $\frac{1}{2}r^2\theta$, where θ is the circular measure of the central angle of the sector.
 - (b) Prove that $\sin^{-1} \frac{1}{\sqrt{5}} + \cot^{-1} 3 = \frac{\pi}{4}$