hysics (New Scheme)			(INTER PART - I CLASS 11th)(I) (Academic Session 2017 -2019)			Time: 20 Minutes Marks: 17		
aper :]			Ohioativa	Code : 6471	20			
1	Note: You have four choices fill that circle in front in zero mark in that q	s for each obj t of that quest question.	ective type question ion number with man	as A, B, C and ker or pen. Co	D. The choice whatting or filling two	hich you thing o or more ci	nk is correct, rcles will result	
. i.	Solid angle is:							
	(A) one dimensional	(B) tv	vo dimensional	(C) three	dimensional	(D) four d	imensional	
♥ ii.	For total assessment o	f uncertain	ty in the final resu	ılt obtained	by multiplication	on we add		
11.	(A) absolute uncertain	ity (B) fra	actional uncertain	ty (C) perce	entage uncertair	nty (D) er	rors	
a iii.	For complete equilibri	um:						
	$(A) \Sigma F = 0$	(B)	$\Sigma \tau = 0$	(C)	$\Sigma F x = 0$	(D) Σ <i>I</i>		
y iv.	If $\overline{A}.\overline{B} = \frac{1}{2}AB$, then	angle betwe	een the vectors w	ill be:	0	99932		
	(A) 30°	(B)	45°	(C)	60°	(D)	90°	
v.	through a hole of area $10cm^2$ flow rate will be:							
	(A) $3m^3S^{-1}$	(B)	$3 \times 10^{-4} m^3 S^{-1}$	(C)	$30m^3S^{-1}$	(D)	$0.03m^3S^{-1}$	
s vi.	The tides give rise in	sea due to g	gravitational pull	of:				
	(A) Moon	(B)	Mars	(C)	Venus	(D)	Satum	
vii.	(A) 3	(B)	12	(C)	24	(D)	22	
³ viii.	The ratio of moment of	oi inerna oi	a disc and sphere	c or same ra	105 15.			
	(A) $\frac{2}{5}$	(B)	5/4	(C)	$\frac{1}{2}$	(D)	5/2	
• ix.	l torr pressure is equa	al to:						
	(A) $130.5 Nm^{-2}$		$133.3 Nm^{-2}$	(C)	$100Nm^{-2}$	(D)	$760Nm^{-2}$	
•∙x. xi.	The speed of sound is (A) density By increasing mass o	(B)	elasticity	(C)	temperature	(D)	oscillation	
Α,,	(A) same	(B)	twice	(C)	thrice	(D)	four times	
xii.		82.5		B 45				
AII.	(A) 4 <i>l</i>	(B)	21	(C)	l	(D)	1/2	
xiii.		18		0.00	¥			
•••	(A) reflected		refracted	(C)	diffracted	(D)	polarized	
—•xiv.		1.70			experiment is:	1		
0.00.000	(A) $\frac{\lambda L}{2d}$		9.000 98.000 9.0000 0	(C)	$\frac{d}{\lambda L}$	(D)	$\frac{d\lambda}{L}$	
2000	24				λL		L	
• XV.	-	5 St. 050	20		Rand width	(D)	Data	
2020*	(A) Immunity	(B)	Dispersion	(C)	Band width	(D)	Dala	
xvi.				(6)			13#00551#E	
	(A) temperature	(B)	energy	(C)	entropy	(D)	pressure	
⋉ XVII.	Efficiency of a heat engine can be increased by					albapäääääga 1864 to ∎ottavattovas		
	(A) increasing sink temperature (B) decreasing sink				-	•		
	III decre	(1) decreasing source temperature			110120 1	deal working substance		

SWL-18

Physics (New Scheme)

(INTER PART -I - CLASS 11th)

Marks: 68

Time: 2.40 Hours

Paper: I

(Academic Session 2017-2019)

SUBJECTIVE

Note:- Section I is compulsory. Attempt any 3 questions from Section II.

(Section - I)

Write short answers to any Eight parts.

 $(8 \times 2 = 16)$

- i. Why do we find it useful to have two units for the amount of substance kilogram and mole?
- ii. Write down the dimensions of viscosity and angular velocity.
 - iii. How will you assess the total uncertainty in case of power factor? Give an example.
- iv. Define radian and steradian with figures.
 - v. Define torque. Write down its S.I unit.
 - vi. \vec{A} and \vec{B} are two vectors $\vec{A} = 2\hat{i} + 5\hat{j}$, $\vec{B} = 3\hat{i} + 7\hat{k}$ then find $\vec{A} \times \vec{B}$
- evii. A picture is suspended from a wall by two strings. Show by diagram the configuration of the strings for which the tension in strings will be minimum.
 - viii. What are inertial and non-inertial frames of references?
 - ix. Calculate the linear momentum of a ball of mass 100 gram which moves with 5 m/s along a straight line.
 - x. Differentiate between elastic and inelastic collision. Give examples.
 - xi. A person is standing near a fast moving train. Is there any danger that he may fall towards the train.
- vii. Explain the working of a carburetor of a motor car using by Bernoulli's Principle.
- 3. Write short answers to any Eight parts.

 $(8 \times 2 = 16)$

- i. What is Salter's duck? Explain it.
- ii. A girl drops a cup from a certain height, which breaks into pieces. What energy changes are involved?
- ³ iii. In which case is more work done? When a 50 kg bag of books is lifted through 50 cm or when 50 kg crate is pushed through 2m across the floor with a force of 50 N?
- iv. Show that 1kwh = 3.6 MJ.
- v. What is meant by angular momentum?
- vi. Why does a diver change his body position before and after diving in the pool?
- vii. Show that in S.H.M acceleration is zero when velocity is greatest and velocity is zero when the acceleration is greatest.
- viii. How resonance plays an important role in microwave oven?
 - ix. Define simple harmonic oscillator and driven harmonic oscillator.
 - x. What is slinky spring?
- , xi. What do you mean by red. shift in application of Doppler effect?
- , xii. Differentiate between longitudinal and transverse waves.

	Write short answers to any Six parts: $(6 \times 2 = 12)$							
~ i.	Could you obtain Newton's rings with transmitted light? If yes would the pattern be different from	m that	•					
	obtained with reflected light?							
∘ ii.	How would you manage to get more orders of spectra using a diffraction grating?							
۵iii.	Can visible light produce interference fringes? Explain it.							
"iv.	Why would it be advantageous to use blue light with a compound microscope?							
аv.	What are the two conditions for total internal reflection to take place?	4/1						
əvi.	Is it possible to construct a heat engine that will not expel heat into the atmosphere?							
vii.	Why does the pressure of a gas in a car tyre increase when it is driven through some distance?	4						
• viii.	Define entropy. Give its mathematical form and SI Unit.							
∘ ix.	Can the mechanical energy be converted completely into heat energy? If so give an example.							
	Section - II Attempt any three (3) questions: $(8 \times 3 = 24)$							
Note:-	Attempt any times (5) questions.	n B u						
5. "(a)	Describe vector addition by rectangular components. First find the resultant of two vectors an	d then						
	generalize for 'n' vectors.	(1 + 2+1+1 =	·5)					
• (b)	A bomber dropped a bomb at a height of 490 m, when its velocity along the horizontal was $300 Kmh^{-1}$. At							
	what distance from the point vertically below the bomber at the instant, the bomb was	dropped. Di	d					
	it strike the ground?		3					
6. 1 (a)	What is geostationary orbit? Determine orbital radius for a geostationary satellite measured for	om the centre	of					
	the Earth.		5					
ş (b	A car of mass 800 Kg travelling at $54Kmh^{-1}$ is brought to rest in 60 m. Find the average	ige retarding						
	force on the car.		3					
7. '(a)	Define terminal velocity. Derive its formula.		5					
> (p)	336 J of energy is required to melt 1 g of ice at 0°C. What is the change in entropy of 30 g of water at							
	$0^{\circ}C$ as it is changed to ice at $0^{\circ}C$ by a refrigerator?	E E	3					
8. · (a)	What is Doppler's effect? Discuss its four cases.			5				
÷(b)	A 100 g body is hung on a spring elongate the spring by 4.0 Cm. When a certain object is hung on the spring							
	and set vibrating, its period is 0.568s. What is the mass of the object?	\$1 12		3				
9. (a)	Explain the diffraction of X-ray by crystal. What are uses of diffraction of X-ray?	51 12		5				
, (b)	An astronomical telescope having magnifying power of 5 consist of two thin lenses 24 cm ap	art.						
	Find the focal length of lenses.		3					