

	(D)	L.K.No. 1107	Paper Code No. 6477
Physics	(D) (Objective Type)	Inter – A – 2021	(Group Ist)
Paper I Time :	20 Minutes	Inter (Part I)	BUP-91-21
Marks :	17	Session (2017 -19) to (2020 - 22)	

Note: Four possible choices A, B, C, D to each question are given. Which choice is correct fill that circle in front of that Question No. Use Marker or Pen to fill the circles. Cutting or filling two or more circles will result in Zero Mark in that Question.

Q.No.1	If the percentage uncertainty in the radius of sphere is 3 %, then total uncertainty in volume is : (A) 4 % (B) 7 % (C) 9 % (D) 13 %
(1)	The magnitudes of Dot and Cross Product of two vectors are $2\sqrt{3}$ and 2 respectively, then the
(2)	angle between vectors is : (A) 30° (B) 45° (C) 60° (D) 90°
(3)	If two unit vectors are perpendicular to each other, then magnitude of their resultant is:
(-)	(A) 1 (B) $\sqrt{2}$ (C) $\sqrt{2.5}$ (D) $2\sqrt{2}$
(4)	$\sqrt{\frac{F \times l}{m}}$ is equal to : (A) Torque (B) Frequency (C) Speed (D) Power
(5)	Acceleration of Rocket is given by the relation :
	(A) $a = \frac{M}{mv}$ (B) $a = \frac{mv}{M}$ (C) $a = \frac{m}{Mv}$ (D) $a = \frac{mv}{m}$
(6)	The speed of hoop on reaching the bottom of an inclined plane is :
	(A) $\sqrt{\frac{3}{4}}gh$ (B) \sqrt{gh} (C) $\sqrt{\frac{4}{3}}gh$ (D) $\sqrt{2gh}$
(7)	Kilo Watt - Second is the unit of : (A) Power (B) Energy (C) Momentum (D) Time
(8)	For which pair of angles, Range is same :
	(A) (15°, 60°) (B) (35°, 65°) (C) (30°, 60°) (D) (20°, 45°)
(9)	The ratio of Rotational and Translational K.E. of hoop is :
	(A) 1:2 (B) 1: $\sqrt{2}$ (C) 1:1 (D) $\sqrt{2}$:1
(10)	The value of r for diatomic gas is : (A) 1.29 (B) 1.4 (C) 1.67 (D) 1.73
(11)	Time Period of Simple Pendulum is directly proportional to :
	(A) ℓ (B) ℓ^2 (C) $\ell^{1/2}$ (D) g
(12)	If Radius of Droplet is halved, then its Terminal Velocity becomes : (A) Half (B) Double (C) One Fourth (D) Four Times
(12)	The speed of sound at a given temperature is v, by doubling pressure speed of sound is :
(13)	(A) 0.5 v (B) v (C) 2 v (D) 3 v
(14)	Pressure of a Gas is equal to : (A) $\frac{2}{3} p < v^2 >$ (B) $\frac{3}{2} p < v^2 >$ (C) $\frac{1}{3} p < v^2 >$ (D) $p < v^2 >$
(15)	If a Convex Lens of Focal Length 5 cm is used as a Simple Microscope, then its magnifying Power is : (A) 5 (B) 6 (C) 10 (D) 25
	0 0 0 0
(16)	Angle between Wavefront and Ray of light is : (A) 0° (B) 45° (C) 60° (D) 90°
(17)	For a Diatomic Gas $C_v = \frac{5R}{2}$ then F for this gas is equal to :
	(A) $\frac{5}{7}$ (B) $\frac{7}{5}$ (C) $\frac{4}{3}$ (D) $\frac{3}{4}$

Roll No. 1107 - 21000 Session (2017 -19) to (2020 - 22) Inter (Part - I) Physics (Subjective) Inter - A - 2021 Time 2:40 Hours Marks: 68 Group Ist

Note: It is compulsory to attempt any (8 – 8) Parts each from Q.No. 2, Q.No.3 and attempt any (6) Parts from Q.No.4. Attempt any (3) Questions from Part - II .Write the Same Question Number and its Part Number as given in the Question Paper

Make Diagram where necessary.

Part - I

			mere necessary.	Part - I		22 x 2 = 44
Q.N	0.2	(i) W	hat are the Dimensions and	Units of Gr	avitational Constant G in the formula F =	$G^{m_1m_2}$
		(III) Sh	ow that the famous Finetoir	. Farmelon	2	•
		(iii) Th	e time of 30 vibrations of a	simple per	= mc is dimensionally consistent. dulum recorded by a stop watch accurate uncertainty?	
	2	(iv) The	a second is 54.6 s. Find its	period with	uncertainty?	upto one tenth
		giv	en is correct $f = v\lambda$, f	epends on t	ne speed ${f V}$ and its frequency ${f f}$, decide	which of the
		(v) Car	you add zero to a Null Ve	- V/A?		
1		(vi) If	all the components of the	vectors A.	and $\overline{A_2}$ were reversed, how would this	
		\overline{A}_1	$\times \overline{A_2}$?	1	this were reversed, now would this	s alter
	((vii) Sho	w that the Vector Addition	is Commut	ativo	
1	(viii) At	what point or points in its r	ath does a	active .	
	(r momentu	projectile have its minimum speed, its ma	ximum speed ?
	1	(x) Defi	ne two types of Collisions.	ii iiioiiientur		
	(xi) Show	w that the range of projectile is	mavimum wi	ton projectile is the	
-					nen proj <mark>ectile</mark> is thrown at an angle of 45 ⁰ with	
Q.No.	3 (אווי עו	mich case is more work dor	ne when a	EO Vo has at 1 1 1 1 1 1	
	(i	a 50 ii) Shov	Kg crate is pushed through	1 2 m across	the floor with a force of 50 N?	n OR when
			that Power is the Dot Pro	oduct of For	ce and Velocity.	
	(i		that a = rd where d is t	h = 0 - 1		
	(1	v) Write	down three equations of	Angular Mo	Acceleration. tion	1
	(v	(i) When	Mud Flies off the tyre of	a moving F	lieurele 3 to 1 to 1	
1	(vi			Pendulum if	the value of "g" increases by 2 - times	ain.
	(vi	ii) Defin	Bob increases 2 - times?		a mireases by 2 – times	and mass of
	(ix) When	Resonance giving one exa	mple of Res	onance.	
	(х) What	s the difference between	Doen and C	ng System, why this system do not oscillate	indefinitely?
	(xi) How 1	he Velocity of Waves generate	ed in a Strin	g change, if the tension in the String is made	
	(xii		and chiest of biessule at	10 Density o	f the Medium - I be to	4 - times ?
Q.No.4	(i)					
	(ii) (iii)	Cany	INDIE light produce interfere	ance frinces) Fundatu	
	(iv)	What	do you mean by Normal A	ore sources	of light behave as Coherent Sources of light	zht ?
	(v)		do you mean by Normal Ad is Spectrometer? Give name			
	(vi)	AAIIGE	gre source and Sink for Ca	rnot Engine	3	
	(vii) (viii)	AALIE	gown two Postulates for Kin	netic Theory	of Carrie	
	(ix)		villed to a uas at congrant	procesure in	www.ada41	Ime . Why ?
			The to construct a near (engine that	greater than the specific heat at constant volu will not expel heat into atmosphere?	
				Part - II		
Q.No.5	(a)	Explain	the addition of Vectors by	Rectangula		
	(b)	A 1500	Kg car has its velocity redu	uced from 2	0 m / sec to 15 m / sec in 3 • 0 sec . How la	(5)
Q.No.6	/- 3	was the	average retarding force?		only sec to 15 m/ sec in 3 . 0 sec. How la	irge
Q.140.0	(a)	Derive I	ewton's formula for the spec	ed of sound i	n air and describe the correction by Laplace	(3)
	(b)	How las	ge a force is required to a	accelerate a	electron (m = 9 . 1 x 10 ⁻³¹ Kg) from res	in it. (5)
		a snee	d of 2.0 x 10 ms thro		Kg) from re	st to
Q.No.7	(a)	Define (entringtal Force and Aut	ough a dista	nce of 5.0 cm ?	(3)
	(b)	What G	entripetal Force and derive	the relation	of Centripetal Force.	
	\- <i>,</i>	to the r	hains to reach a vertical he	the city m	ains for a stream from a fire hose conne	ected
Q.No.8	(a)					
	(b)	A Heat	ngine performs 100 I of w	ork and -	Law of Conservation of Energy for this Syste	m. (5)
		to the c	old reservoirs. What is the	efficiency of	the same time rejects 400 J of Heat ener	ву
Q.No.9	(a)	Describe	the construction and worki	ng of Misk-	long the f	(3)
	(b)	mi maulo	invitical relescope having m	agnifying no	ison's interferometer. Wer of 5 consists of two thin lenses 24 cr	(5)
		apart. Fin	d the Focal Lengths of thes	e lenses.	consists or two thin lenses 24 cr	1
						(3)

Physics	(A)	L.K.No. 1108	Paper Code No. 6472
Paper I	(Objective Type)	Inter - A - 2021	(Group 2nd)
Time :	20 Minutes	Inter (Part I)	Bup-62-21
Marks :	17	Session (2017 -19) to (2020 - 22)	

Note: Four possible choices A, B, C, D to each question are given. Which choice is correct fill that circle in front of that Question No. Use Marker or Pen to fill the circles. Cutting or filling two or more circles will result in Zero Mark in that Question.

Q.No.1	In earth's Gravitational Field, work done in a closed path is :
(1)	(A) Maximum (B) Positive (C) Negative (D) Zero
(2)	A two meter high tank is full of water. A hole appears at its middle, what is speed of Efflux :
	(A) 3.75 m/s (B) 4.91 m/s (C) 4.42 m/s (D) 5.11 m/s
(3)	A particle execute SHM of amplitude A. Potential Energy is maximum when the displacement is :
	(A) $\pm A$ (B) $Zero$ (C) $\pm \frac{A}{2}$ (D) $\pm \frac{A}{\sqrt{2}}$
(4)	In Young's Double Slit Experiment the Fringe Spacing is equal to :
	(A) $\frac{d}{\lambda L}$ (B) $\frac{L}{\lambda d}$ (C) $\frac{\lambda L}{d}$ (D) $\frac{Ld}{\lambda}$
(5)	Expression for Resolving Power of Lens is :
	(A) $\alpha_{min} = \frac{\lambda}{D}$ (B) $R = \frac{1}{\alpha_{min}}$ (c) $R = \frac{D}{1.22 \lambda}$ (D) $R = \frac{\lambda}{\lambda_{2-\lambda_{1}}}$
(6)	Which of the following measurement is more precise :
	(A) 3127 s (B) 312.7 s (C) 31.27 s (D) 3.127 s
(7)	A system takes 88 seconds to complete 25 oscillations. Time period of the system is :
	(A) 3.52 s (B) 35.2 s (C) 3.82 s (D) 0.032 s
(8)	If $r = 5 \text{ m}$ and $F = 4 \text{ N}$ are along same direction then Torque is :
0.0000.0000-00	(A) 5 N-m (B) 20 N-m (C) 10 N-m (D) Zero
(9)	If Vector makes angle θ with the x-axis, its x-component is :
	(A) A $\sin\theta$ (B) A $\tan\theta$ (C) A $\cos\theta$ (D) A $\sec\theta$
(10)	Which of the given variable is present in all three equations of Motion :
(11)	(A) Acceleration (B) Distance (C) Time (D) Torque Motion along y – axis is :
(11)	(A) One Dimensional (B) Two Dimensional (C) Three Dimensional (D) Angular
(12)	One Radian is equal to : (A) $2\pi rev$ (B) $\frac{\pi}{4} rev$ (C) $\frac{\pi}{2} rev$ (D) $\frac{1}{2\pi} rev$
(13)	S.I. Unit of Angular Acceleration is : (A) rad/s^2 (B) rev/s^2 (C) $degree/s^2$ (D) m/s^2
(14)	If 20 Waves passes through medium in 1 second with speed of 20 ms -1, then Wavelength is :
	(A) 20 m (B) 200 m (C) 400 m (D) 1 m
(15)	Velocity of Sound is maximum in : (A) Air (B) Nitrogen (C) (Vetal (D) Glass
(16)	The Efficiency of Heat Engine is 100%, when temperature of Sink is:
ļ	(A) 0°C (B) 0°F (C) 0 K (D) 273 K
(17)	Area under p - v Diagram of Carnot Engine represents :
	(A) Heat Input (B) Heat Output (C) Efficiency (D) Work done

Roll No.	1108 - 2000	Session (2017 –19) to (2020 – 22)	Inter (Part – I)
Physics (Subjective)			Group 2nd

Note: It is compulsory to attempt any (8 – 8) Parts each from Q.No. 2, Q.No.3 and attempt any (6) Parts from Q.No.4. Attempt any (3) Questions from Part – II. Write the Same Question Number and its Part Number as given in the Question Paper

Make Diagram where necessary. Part - I $22 \times 2 = 44$ What are the Dimensions and Units of Gravitational Constant G in the formula $\mathsf{F} = G \frac{m_1 m_2}{2} ?$ Q.No.2 (i) (ii) Is a Precise Measurement also an Accurate Measurement? Explain your answer. (iii) Show that the equation $V_f = V_i + at$ is dimensionally correct. (iv) Is it possible to add a Vector Quantity to a Scalar Quantity? Explain. How would the two vectors of the same magnitude have to be oriented if they were to be (v) combined to give a resultant equal to a vector of the same magnitude? If all the components of the vectors $\overrightarrow{A_1}$ and $\overrightarrow{A_2}$ were reversed, how would this alter $\overrightarrow{A_1}$ x $\overrightarrow{A_2}$? (vi) (vii) State the Law of Conservation of Linear Momentum, pointing out the importance of Isolated System. Prove that for angles of Projection, which exceed or fall short of 450 by equal amounts the ranges are equal. (viii) What is Force due to Water Flow? (ix) Explain the difference between Laminar Flow and Turbulent Flow. (x) Write the Dimensions of : (a) Density (b) Power (xii) Does a Moving Object have impulse? (xi) Q.No.3 (i) Define Power and Absolute P.E. (ii) Define Stationary Waves and Organ Pipe. Why does sound travel faster in Solids than in Gases? (iii) (iv) Prove the relation $v = f\lambda$ for Waves. Define Work Energy Principle and write its formula. (vi) Define Simple Pendulum and Second Pendulum. Calculate the work done in Kilo Joules in lifting a mass of 10 Kg (at a steacly velocity) through a vertical height of 10 m. (viii) Define Angular Velocity and Angular Displacement. Find the speed of Hoop on reaching at the bottom of the inclined plane when rolled down from an inclined plane of height h. Explain the difference between Tangential Velocity and the Angular Velocity. If one of these is given for a wheel of known radius, how will you find the other? (xi) Under what conditions does the addition of two simple Harmonic Motions produce a resultant, which is also Simple Harmonic? Explain the relation between Total Energy, Potential Energy and Kinetic Energy for a body oscillating with S.H.M. Q.No.4 Can Visible light produce interference fringes? Explain. (i) Explain whether the Young's Experiment is an Experiment for studying Interference or Diffraction Effects of light? (ii) What are Newton's Rings? Why the centre of the Newton's Rings is dark for reflected light? (iii) Explain the difference between Magnifying Power and Resolving Power of Optical Instrument? (iv) (v) What is the function of Collimator in Spectrometer? (vi) Can the mechanical energy be converted completely into Heat Energy, if so give an example. (vii) What is the difference between Isothermal and Adiabatic Process? State 1st Law of Thermodynamics. How it is applicable on human body? (viii) Derive Boyle's Law from Kinetic Theory of Gases. (ix) Part - Ii Q.No.5 Define Vector Product. Write down the four characteristics of Scalar Product. (5) A ball is thrown horizontally from a height of 10 m with velocity of 21 m / s. How far off it hit the ground and with what velocity? (3) Q.No.6 (a) Define Absolute Potential Energy. Derive relation for Absolute P.E. of body of mass m on the surface of earth. (5) (b) A stationary wave is established in a string which is 120 cm long and fixed at both ends. The string vibrates in four segments at a frequency of 120 Hz. Determine its Wavelength and the fundamental frequency. (3) Q.No.7 What are Real and Apparent Weight? Find the apparent weight in different cases for an (a) object suspended by a string and spring balance in an elevator moving vertically. (5) (b) What Gauge Pressure is required in the city mains for a stream from a fire hose connected to the mains to reach a vertical height of 15.0 m? (3) Q.No.8 (a) What is Carnot Engine? Discuss Carnot Cycle, also derive relation for its efficiency. (5) A block of Mass 4 Kg is dropped from height of 0.6 m on to a spring of Spring Constant (b) K = 1960 Nm⁻¹. Find the maximum distance through which spring will be compressed? (3) Write down the construction of Compound Microscope and derive a relation for its Angular Magnification. Q.No.9 (a) (5) (b) In a Double Slit Experiment, the second order maximum occurs at $\theta = 25^{\circ}$ The Wavelength is 650 nm. Determine the Slit Separation. (3)