	٥٠		~ 0
1242 - Dlogge W	rite your Roll No. in the s	pace provided and sig	n. Roll No
(Intov Part II)	DESSION LULU AL	0 = 0 = 0 = 0	
Obvoice (Objective)	5/10-1-24 (Gr	oup I)	Paper (I)
Fime Allowed:- 20 minu	tes PAPER C	ODE 2471	Maximum Marks:- 17
Note:- You have four choices hat circle in front of that ques result in zero mark in that ques Answer Sheet and fill bubbles	for each objective type question stion number. Use marker or p estion. Write PAPER CODE, w accordingly, otherwise the stud	n as A, B, C and D. The chen to fill the circles. Cutting which is printed on this quesent will be responsible for the contract of the contrac	g or filling two or more circles will stion paper, on the both sides of the he situation. Use of Ink Remover or Q. 1
1) The percentage of	uncertainty for V and I is 2	2% and 6% respectively	. Hence, total uncertainty in
the value of $R = V$	/_ is		
the value of it			(D) 40/
(A) 8%	(B) $\frac{1}{3}\%$	(C) 3%	(D) 4%
(A) $3.15 \times 10^{+7}$ 3) A vector of 10N r	years (B) 3.1 × 10 ⁻⁸ years naking an angle of 60° with (B) 5 N cody collides with a body of	n y-axis. Its x-componer	ears (D) 3.1×10^{-6} years it is equal to (D) 10 N t is the final velocity of
massive body if it (A) 10 m/s	(B) 15 m/s	(C) 20 m/s	(D) Information is not enough
(A) Tomos	owing can be possessed by (B) Momentum	(C) Impulse	(D) Power
 6) The formula W = (A) F can vary must be in c. 	but \vec{d} (B) \vec{F} can vary but \vec{d} (B) \vec{F} can vary but \vec{d} ircle must be in straine all these five parameters \vec{d}	at d (C) F is constanting a series out	he curved
7) θ , ω , α , τ , L	all these five parameters of	can have the same direct	ocity (D) Angular velocity
(A) Torque show applied external (A)	ild be (B) Angular mom	entuin (C) Angulai ver	,010)
8) Centripetal force	e is acted along (B) Curved line	(C) Circular path	(D) Elliptical path
Remoulli's theo	rem can be reduced to theorem (B) Both Torricel	but not to tion Torricelli's	lation (D) This equation can not be reduced
		theorem	when intial phase is 270°
(A) $x_0 \sin \omega t$	ation of the phase for a vib (B) $x_o \cos \omega t$	(0) % 0 5111 551	(D) $-x_{\alpha}\cos\omega t$
11) How speed of s (A) $v \propto \frac{1}{x}$	ound varies with temperature (B) $_{v \propto} \sqrt[1]{\sqrt{T}}$	(0) 7331	(D) $v \propto \sqrt{T}$
12) At which angle (A) 45°	, we get more orders of spe (B) 90°	iner with niston having ar	(D) 30° ea 0.10 m². If the gas expands and y the gas is
piston is pushe (A) 8000 J	(B) 400 J	(C) 40 J	y the gas is (D) 80 J
14) For diatomic ga	$_{\rm S} C_{\rm v} = \frac{5R}{2}$, therefore " γ " for	for this gas is (C) 7.5	(D) 5.7
(A) $\frac{7}{5}$.	(B) $\frac{5}{7}$	(0) 7.3	\- /
	1100 1104	25000 (1) F	Р.Т.О

1129 - 1124 -- 25000 (1) P.T.O

L	
5-	For rotational equitibrium, the value of force in the following figure is
	force in the following figure is
-	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	c) 2N d) 6N = 4m
	•
	7 15 110
16-	Mayor in the frame
	In the organ prope XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	a) $f_5 = 5f_1$ b) $f_9 = 9f_1$
	de la serie de la
	$c7 f_3 = 3f_1$ $d_3 f_{3} = 7f_1$
	ta.
	at a last sais = it me and
17-	y a light ray is incident with an angle higher than exitical angle, then the
	predicted ray of light after incidence
	a) light ray follows path 1
	5) light ray follows parts 2
	c) light ray Jollows path 3
	d) light ray follows path 4

Answer briefly any Eight parts from the followings:-2. Why do we find it useful to have two units for the amount of substance kilogram and the mole? (i) Write the dimensions of pressure and density. (iii) What are supplementary units? Define only one unit. (ii) Add the following masses given in kg upto appropriate precision. 2.189, 0.089, 11.8 and 5.32? (iv) Under what circumstances would a vector have components that are equal in magnitude? (v) (vi) What is the unit vector in the direction of the vector $\vec{A} = 4\hat{i} + 3\hat{j}$? Is it possible to add a vector quantity to a scalar quantity? Explain. (vii) What is ballistic missile? Define its trajectory. (viii) Show that the area between the velocity time graph is numerically equal to the distance covered by the object. (ix) Motion with constant velocity is a special case of motion with constant acceleration. Is this statement true? Discuss. (x) Calculate the work done in kilo joules in lifting a mass of 10 kg through a vertical height of 10 m. (xi) Differentiate between geyser and aquifer. (xii) $8 \times 2 = 16$ Answer briefly any Eight parts from the followings:-3. Why does a diver change his body positions before and after diving in the pool? (i) Show that orbital angular momentum, $L_o = mvr$ (ii) State the direction of the following vectors in simple situations; angular momentum and angular velocity. (iii) Prove that $a_T = r\alpha$ where, a_T = tangential acceleration, r = radius of circle, α = angular acceleration. (iv) (vi) What is meant by drag force? Why does droplets appear to be suspended in air? (v) Name two characteristics of simple harmonic motion. (vii) Describe some common phenomena in which resonance plays an important role. (viii) Define the phenomenon of resonance. (x) Prove that $v = f\lambda$ (ix) Explain why sound travels faster in warm air than in cold air (xii) Explain the terms (a) trough (b) Antinode (xi) Answer briefly any Six parts from the followings:- $6 \times 2 = 12$ 4. How is the distance between interference fringes affected by the separation between the slits of (i) Young's experiment? Can fringes disappear? Write two steps of Huygen's principle. What is its importance. (ii) How would you distinguish between un-polarized and plane-polarized lights? (iii) How you can increase the resolving power of a telescope? (iv) How the power is lost in optical fibre through dispersion? Explain. (v) A telescope is made of an objective of focal length 30 cm and an eye piece of 5 cm, both convex (vi) lenses. Find the angular magnification. Give an example of a process in which no heat is transferred to or from the system but the (vii) temperature of the system changes. How "Human Metabolism" provides an example of energy conservation and saticsfy the first law (viii) of thermodynamics. What is Boltzman Constant. Calculate its numerical value. (ix) Note: Attempt any three questions. Section ----- II $(8 \times 3 = 24)$ Define and explain the term torque. Derive expression for torque due to force acting on a rigid body. 5. (a) Prove that for angles of projection, which exceed or fall short of 45° by equal amounts, the ranges are equal. (b) Discuss interconversion of Potential energy and Kinetic energy. 6. (a) A stationary wave is established in a string which is 120 cm long and fixed at both ends. The string vibrates in (b) four segments, at a frequency of 120 Hz. Determine its wavelength and the fundamental frequency. 7. What is the simple pendulum. Show that the motion of a simple pendulum is simple harmonic. Also derive expression for its time period and frequency. A gramophone record turntable accelerates from rest to an angular velocity of 45.0 rev min⁻¹ (b) in 1.60 s. What is its average angular acceleration. 8. Define molar specific heat of gas. Also prove $C_p - C_v = R$ (a) Water flows through a hose, whose internal diameter is 1cm at a speed of 1ms⁻¹. What should be the diameter of the nozzle if the water is to emerge at 21ms⁻¹. Describe the working of compound microscope, derive an expression for magnifying power 9. (a) and write the formula of length of compound microscope. X – rays of wavelength 0.150 nm are observed to undergo a first order reflection at a Bragg angle of 13.3° from a quartz (SiO₂) crystal. What is the interplanar spacing of the reflecting planes in the crystal? 1130 -- 1124 -- 25000

1124 Warning:- Please, do not write anything on this question paper except your Roll No.

Physics (Subjective) Group (I)

Time Allowed: 2.40 hours Section ----- I

(Session 2020-22 to 2023-25) (Inter Part - I) Paper (I)

Maximum Marks: 68

 $8 \times 2 = 16$

,	Warning:- Please	write your Roll No. in t	he space provided and s	ign. Roll No			
	Dowt T)	(Session 2020-22 to 20	23-25) Sig. of Stu	ident			
Physics	(Objective)	S4D-2-24 (Grou	p II) Pa	aper (I)			
Time Allowed:- 20 minutes PAPER CODE 2478 Maximum Marks:- 17 Note:- You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of the Answer Sheet and fill bubbles accordingly, otherwise the student will be responsible for the situation. Use of Ink Remover or white correcting fluid is not allowed.							
1)	In multimode step i	ndex fibre, the diameter	of the core is	(D) 50			
	(A) $20\mu m$	(B) $30\mu m$	(C) 40 <i>μm</i>	(D) $50\mu m$			
	What remains const (A) Pressure Triple point of water	tant in adiabatic process (B) Volume	(C) Temperature	(D) Entropy			
3)	(A) 273.16 °C	(B) 273.16 °F	(C) 273.16 K	(D) 373.16 K			
4)	Significant figures (A) 2	(B) 3	(C) 4	(D) 5			
	One light year is eq. (A) 9×10^{12} m	(B) $9 \times 10^{13} \text{ m}$	(C) $9 \times 10^{14} \text{ m}$	(D) $9 \times 10^{15} \text{ m}$			
6)	If the magnitude of	$f(\vec{A} \cdot \vec{B}) = \frac{1}{2}AB$ then the an	ngle between \vec{A} and \vec{B} is	* .			
	(A) 30° The dimensions of	(B) 45°	(C) 60°	(D) 90°			
1)		(B) $[ML^{-1}T]$	(C) $\left[M^2LT^{-2}\right]$	(D) $[ML^2T^{-2}]$			
Section 1	(A) $\left[M^{-1}LT\right]$		•				
	(A) Hyperbola	es with constant accelera (B) Parabola aximum when the time o	tion, The velocity time gr (C) Curve f collision is	(D) Straight line			
	(A) 1 Sec	(B) $\frac{1}{10}$ Sec	(C) $\frac{1}{100}$ Sec	(D) $\frac{1}{1000}$ Sec			
10	(A) Earth	pe velocity is maximum f (B) Moon	(C) Jupiter	(D) Mercury			
11	1) A body of 1kg mo (A) 9.8 N	oving up with a = g then (B) 98 N	ts ipportent weight is C 9.6 N	(D) 0.98 N			
12	2) The moment of in	ertia of a ring is equal to		*1			
	$(A) \frac{1}{2}mr^2$	(B) mr^2	(C) $\frac{2}{5}mr^2$	(D) $\frac{1}{4}mr^2$			
	3) One Torr is equal (A) 1.333 Nm ²	(B) 13.33 Nm ²	(C) 133.3 Nm ²	(D) 1333 Nm ²			
	(A) Twice	ss of the object four time (B) Thrice and in air at 30 °C is appro-	es attatched to a spring tin (C) Four times eximately equal to	(D) Six times			
	(A) 332 m/s	(B) 335 m/s	(C) 340 m/s	(D) 350 m/s			
-	(A) Wavelength	ered by wave in 1 second (B) Wave number	l is er (C) Wave speed	(D) Frequency			
1	7) Longitudinal wav(A) Polarization	(B) Diffraction	(C) Reflection	(D) Refraction			
	D.	1131 - 112	24 - 15000 (4	l) •			

1	(v)	now would you explain albituary direction for a native costs.
	(:)	The vector sum of three equal in magnitudes vectors gives a zero resultant. What can be the orientation of the vectors.
	(:i\	If one of the rectangular components of a vector is not zero, can its magnitude be zero? Explain
	(viii)	How do you find out the height of a tower by using one of the equation of motion. Write all steps you take for measurement.
1	(iv)	Derive a formula for range of the projectile.
	(v)	Why two projectiles fired with different initial horizontal velocities take same time to reach ground?
	(wi)	What do you understand by the term "escape velocity". Give the value of escape velocity for Earth.
	(xii)	Calculate the work done in kilo joules in lifting a mass of 10 kg through a vertical height of 10 m.
	a í	A newer briefly any Fight parts from the followings: $8 \times 2 = 16$
	(i)	A person is standing near a fast moving train. Is there any danger that he will fall towards it.
	(ii)	Differentiate between systolic and diastolic pressure. Are these values varies with age.
	(iii)	What do you mean by term weightlessness in satellite.
100	(iv)	What is moment of inertia? Explain its significance.
	(v)	A disc and a hoop starts moving down from top of an inclined plane at the same time which will
8		have great speed on reaching bottom.
200	(vi)	Why an object, orbiting the earth, is said to be freely falling, use your explanation to describe why
-	` '	chicete appear weightless under certain circumstances.
Ų	(vii)	What are the values of velocity of a vibrating mass-spring system at its mean and extreme point.
とうべんしとことの	(viii)	What should be the length of a simple pendulum whose time period is 1.0 sec. what does effect of
ž	, , ,	longth if time period is doubled
1	(ix)	Describe phenomenon of tunning a radio. (x) How beats are useful in tuning musical instrument.
B	(xi)	Is it possible for two identical waves travelling in same direction, will give rise to stationary wave.
5	(xii)	In an organ pipe, closed at one end, how does harmonic varies with length of an coulomn.
	4.	A nervous briefly any Six parts from the followings:
2	(i)	Differentiate between spherical and plane wave front.(11)Can visible light produce interference minges:
	(iii)	How would you manage to get more orders of spectra using a diffraction grating?
-	(iv)	How a piece of paper is used to see a print clearly?
-	(v)	Why would it be advantageous to use blue light with a compound microscope?
1	(vi)	It has a small a transmitted through the ontical fibre?
1	(vii)	Why does the pressure of a gas in a car tyre increase when it is driven through some distance?
į	(viii)	Why specific heat at constant pressure is greater than specific heat at constant volume:
1	(ix)	How can efficiency of Carnot Engine be increased?
Ì	Note:	Attempt any three questions. Section II $(8 \times 3 = 24)$
	5.	(a) Define elastic collision. Show that for elastic collision, relative speed of approach is equal to
1		relative aread of separation
		(b) Find the projection of vector $\vec{A} = 2\hat{i} - 8\hat{j} + \hat{k}$ in the direction of the vector $\vec{B} = 3\hat{i} - 4\hat{j} - 12\hat{k}$
ĺ	_	$\frac{1}{2}$ and also find out its value.
í	6.	(a) Define escape velocity. Prove that $v_{esc} = \sqrt{2gR}$ and also find out its value.

1124 Warning:- Please, do not write anything on this question paper except your Roll No.

Section -----I

Write two steps which are involved in the measurement of a base quantity.

Give the drawbacks to use the period of a pendulum as a time standard.

Show that the famous "Einstein equation" $E = mc^2$ is dimensionally consistent.

How would you explain "arbitrary direction" for a null vector obtained from east and west directed two equal in magnitude vectors.

Group (II)

Answer briefly any Eight parts from the followings:-

What are the three main frontiers of Physics.

Physics (Subjective)

(i)

(ii)

(iii)

(iv)

(v)

6.

7.

8.

9.

(a)

(b)

(a) **(b)**

(a)

(b)

(a) (b)

Time Allowed: 2.40 hours

(Session 2020-22 to 2023-25)

Paper (I)

(Inter Part - I) Maximum Marks: 68

 $8 \times 2 = 16$

SGD-2-24

the minimum angle for total internal reflection if pipe is in water? (Refractive Index of water = 1.33)

What is meant by geostationary orbit? Derive formula for its radius.

Explain the diffraction of X-rays by crystals.

What is Carnot engine. Explain its working and calculate its efficiency.

Find the temperature at which the velocity of sound in air is two times its velocity at 10 °C.

A simple pendulum is 50.0 cm long. What will be its frequency of vibration at a place where, $g = 9.8 \text{ ms}^{-2}$.

Certain globular protein particle has a density of 1246 kgm⁻³. It falls through pure water

 $(\eta = 8.0 \times 10^{-4} kgm^{-1}s^{-1})$ with a terminal speed of 3.0 cmh⁻¹. Find the radius of the particle.

A glass light pipe in air will totally internally reflect a light ray if its angle of incidence is at least 39°. What is