_			Ko	II No			Annual 2018	
Statistics	(New Scheme)	(INTE	R PART - I	CLASS 11 th	^b) (I)	Time:2	0 Minutes	
Paper:1			emic Session			Marks:	17	
			OBJECT					
			Code: 6	181				
Note:	You have four choices for fill that circle in front of tin zero mark in that quest	that question nur	ype question as nber with mark	s A, B, C and er or pen. Cu	D. The choice atting or filling t	which you t two or more	hink is correct, circles will result	
I. i.	A quantity computed f	rom sample is	s called:			<u>02</u> 99		
	(A) parameter	(B) sta	atistic	` '	-	(D) p	opulation	
	The process of arrangi	(B) t	abulation	(C)	sampling	(D) f	requency distri	bution
iii.	The cumulative freque	ency distributi	on is graphic	cally repres	ented by:	(D)	ogive	
	(A) frequency curve	(B) frequen	cy polygone	(C) pie	-diagram		ogre	
iv.	For a certain frequence					(D)	zero	
	(A) 18	(B)	25	(C)	20	(D)	2010	
٧.	Harmonic mean of an $a+b$				$\frac{2ab}{a+b}$	(D)	a+b	
	(Λ) $\frac{\alpha+\beta}{2}$	(B)	√ab	(C)	$\overline{a+b}$	(D)	2ab	
vi.	Which of the following	ng is a measur	e of dispersi	on?			7.	
	(A) Mean	(B) Mea	n Deviation	(C)	Median	(D)	Quartile	
vii.	The variance of 5,5	, 5 , 5 is: (B)	25	(C)	zero	(D)	one	
λiii.	For a symmetrical dis			8500000				
(111.		(B)		(C)	$\sqrt{b_1} > 3$	(D)	$\sqrt{b_1} < 0$	
ix.	Which price relative	is used in cha	in indices?					
		(B)		(C)	$\frac{p_{n-1}}{p_n} \times 100$	(D)	$\frac{p_0}{p_{n-1}} \times 100$	
х.	The Index number c	onstructed for	the prices o	f more than	one commo	dity is call	led:	
100000	(A) simple price in					ice index	(D) mixed	
XI.	Which of the following (Λ) 1.75	ng cannot be (B)	the probabili zero	ty of an eve (C)	ent? 0.36	(D)	0.82	
xii.	Two events A and B							
00000000	$(\Lambda) \qquad P(A \cap B) = 1$	(B)	$P(A \cap B) =$	0 (C)	$P(A \cup B) =$	= 0 (D)	$P(A \cup B) = 1$	
xiii.	Let $p(x)$ is a probab							
	20202	(B)	less than o		one		greater than o	ne
xiv.	"a" and "b" are ar	iy two constar	nts and "X" i	s a variable	e, then $E(ax -$	+ b) is:		
	(Λ) $aE(x) +$	b (B)	aE(x)	(C)	E(x)	(D)	$a^2E(x)$	+ <i>b</i>
XV.	The binomial probab	oility distribut	ion is positiv	vely skewed	d when:			
	$(\Lambda) p = \frac{1}{2}$	(B)	p = q	(C)	$p > \frac{1}{2}$. ($(D) p < \frac{1}{2}$	
xvi.	The variance of bin	omial probab	ility distribut	(q+p)	³ is:			
		(B)					(D) 3p	
xvii.	Hypergeometric pro	bability distri	bution has p	arameters:				
	(Λ) n, N, k	(B)	n, k	(C	N,	k	(D) N	, n

Statistics (New Scheme):

(INTER PART - I CLASS 11th)

Time: 2:40 Hours

/ Paper: I

SUBJECTIVE

Marks: 68

Academic Session 2017 - 2019

Note: Section I is compulsory. Attempt any three Questions from section II.

(Section - I)

2. Write short answers to any Eight parts.

 $(8 \times 2 = 16)$

- i. What are the two types of quantitative variables?
- ii. What is descriptive Statistics?
- iii. Define Median and write the formula to find it from continuous grouped data.
- iv. The sum of deviations of 10 values from X= 40 is 250, what is the value of arithmetic mean?
- v. Define Harmonic mean.
- vi. Give two important properties of Arithmetic Mean.
- vii. Compute Geometric mean of 5, 25, 125.
- viii. Define weighted index number.
 - ix. What is composite price index number?
 - x. If Fischer's and Paasche's index numbers are 108 and 109 respectively, what is Laspeyre's index number?
 - xi Define the chain indices.
- xii. Explain fixed base method.
- 3. Write short answers to any Eight parts.

 $(8 \times 2 = 16)$

- i. What is size of class interval?
- ii. Define classification.
- iii. What are measures of dispersion?
- iv. Define range.
- v. If n = 10, $\Sigma x = 50$, $\Sigma x^2 = 360$, find variance.

vi 1
$$\Sigma x = 180$$
, $s^2 = 36$, $n = 5$ find C.V.

- vii. Define moments.
- viii. Define sample space.
 - ix If A and B are mutually exclusive events, P(A) = 0.4, P(B) = 0.3, Find $P(A \cup B)$.
 - x Define equally likely events.
- xi. Define independent events.
- xii. Write sample space when a coin is tossed two times.
- 4. Write short answers to any Six parts.

(6x 2 = 12)

- i. Define continuous random variable.
- ii. What are properties of discrete probability distribution?

Given
$$f(x) = \frac{k}{x}$$
, $x = 1, 2, 3$, find k

- iv. If E(X) = 1.1, find E(3x+5).
- v. Define random numbers.

(2)

- vi. Define the binomial experiment.
- vii. If n = 10, $p = \frac{1}{2}$, find variance of binomial distribution.
- viii. Write the formula of hypergeometric probability distribution.
- ix. If N = 11, n = 5, k = 7, find variance of hypergeometric distribution.

Section = II

Note:- Attempt any three (3) questions:

 $(3 \times 8 = 24)$

5. (a) Find the value of mode by using the empirical relationship between averages for the following data.

Marks	2-4	4-6	` 6-8	8-10	10-12
No. of	5	25	40	20	10
Students					

(b) Calculate harmonic mean of the variable X from the following data.

$U = \frac{X - 3.5}{0.5}$	-3	-2	-1	0		2	3
Frequency	15	38	65	92	80	40	20

6. (a) For the following frequency distribution, find quartile deviation.

Marks	10 20	20 - 30	30 - 40	40 - 50	50 - 60
frequency	3	8	14	7	4

(b) Given that $\Sigma f = 76$, $\Sigma f y = 572$, $\Sigma f y^2 = 4848$, $\Sigma f y^3 = 44240$ and $\Sigma f y^4 = 42580$.

Find first three moments about mean and b_1 .

- 7. (a) Construct index numbers from the following data by applying
 - (i) Laspeyer's method (ii) Paasche's method

Base	e year	Current year		
price	quantity	price	quantity	
8	55	2	50	
4	105	4	115	
6	65	8	55	
12	35	14	19	
		8 55	price quantity price 8 55 2	

- (b) An integer is selected at random from first 200 positive integers. What is the probability that integer chosen is divisible by "6" or "8".
- 8. (a) A random variable X has following probability distribution.

x .	-2	-1	0	1	2	3
P(X=x)	0.1	k	0.2	0.3	0.2	0.15
ind (i) k	(ii)	$P(X \ge 2)$	(iii) $P(X)$	=-2) (iv)	P(X > 3)	

(b) A continuous random variable X has the probability density function as

$$f(x) = \begin{cases} a(x+3) & for 2 \le x \le 8 \\ 0 & elsewhere \end{cases}, \quad \text{find (i)} \quad \text{a} \quad \text{(ii)} \quad p(3 < x < 5)$$

- 9. (a) Team A has probability $\frac{2}{3}$ of winning whenever it plays. If A plays 4 games, find the
 - probability that A wins
- (i) Exactly 2 games
- (ii) At least one game
- (b) A box contains ten items, seven of which are good and three are defective. Two items are selected (Without replacement). Compute the probability distribution for the number of defectives in the sample of two.
 224 - 318 - 1880