SWL-18

Roll No.__

Annual 2018

(Turn Over)

Mathematics Paper : II				(IN	(INTER PART II CLASS 12 th) - (III) <u>OBJECTIVE</u>			Time: 30 Minutes Marks: 20		
	Not	e: You	have four choice	s for each	Code: 8195 a objective type que		A, B, C and D.	The choi	ce which	
ψ.	you	think is	correct, fill that	circle in	front of that question in zero mark in that	n numbe	r with marker	or pen. C	utting or	
1	i·	If \int_{2}^{k}	2x.dx = 12 then	<i>K</i> =					2	
		(A)	2,-2	(B)	2,6	(C)	4,-4	(D)	4,2	
	ii.	Distance of the point $P(x, y)$ from $y - axis$ is								
		(A)	x	(B)	y	(C)	X	(D)	у	
	iii.	Y - co-ordinate of centroid of the triangle with vertices A(-2, 3) B(-4, 1) C (3, 5) is								
	111.	(A)	9	(B)	3	(C)	9/2	(D)	3/2	
	iv.	The li	ne $ax + by + c =$	0 is para	llel to $x-axis$ if	20				
		(A)	a = 0	(B)	P = 0	(C)	c = 0	(D)	b = c	
	٧.	Equation of a line passing through (5, - 7) having slope undefined is								
	٧.	(A)	y = -7	(B)	x=5	(C)	x = -5	(D)	<i>y</i> = 7	
Length of the diameter of the circle $(x+5)^2 + (y-8)^2 = 12$ is										
		(A)	4√3	(B)	2√3	(C)	12	(D)	24	
vii. (3,2) is not in the solution of inequality										
		(A)	x+y>2	(B)	x-y>1	(C)	3x + 5y > 7	(D)	3x - 7y < 3	
	viii.	The length of latus rectum of the ellipse $\frac{x^2}{36} + \frac{y^2}{25} = 1$ is								
							25	(T)	3	
		(A)	$\frac{25}{6}$	(B)	$\frac{25}{3}$	(C)	36	(D)	$\frac{3}{25}$	
	ix. Length of the major and minor axes of the ellipse $x^2 + 16y^2 = 16$ is									
		(A)	4,1	(B)	10 , 5	(C)	8,2	(D)	16,2	
	x.	Projec	Projection of a vector \underline{v} along vector \underline{u} is							
		(A)	$\frac{\underline{u} \times \underline{v}}{ \underline{v} }$	(B)	$\frac{\underline{u}.\underline{v}}{ \underline{u} }$	(C)	$\frac{\underline{u}.\underline{v}}{\hat{u}}$	(D)	$\frac{\underline{u}.\underline{v}}{ \underline{v} }$	
	xi.	$[\hat{i}\hat{i}\hat{k}]$]=				3 5			
		(A)	1	(B)	2	(C)	0	(D)	-1	
	xii.	$\int \frac{Se}{\sqrt{T}}$	$\frac{c^2x}{canx}.dx =$				s,	ii ii		
		(A)	$l \circ g_e Tan x + c$	(B)	$l \circ g_e \sqrt{Tan x} + c$	(C)	$2\sqrt[3]{Tan x} + $	c (D)	$2\sqrt{Sec x} +$	

xiii.

If
$$\int f(x).dx = \frac{1}{a} Sec^{-1} \frac{x}{a} + c$$
 then $f(x) = \frac{1}{a} sec^{-1} \frac{x}{a} + c$

(A)
$$\frac{1}{\sqrt{x^2 - a^2}}$$
 (B) $\frac{1}{x\sqrt{x^2 - a^2}}$ (C) $\frac{1}{x\sqrt{x^2 + a^2}}$ (D) $\frac{1}{x\sqrt{a^2 - x^2}}$

$$\frac{1}{x\sqrt{x^2-a^2}}$$

$$\frac{1}{x\sqrt{x^2+a^2}}$$

xiv.
$$\frac{d}{dx} \left(\frac{1}{g(x)} \right) =$$

$$(\Lambda) \quad (g(x))^{-2}.g'(x)$$

(B)
$$-1(g'(x))^{-2}.g(x)$$

(C)
$$(-1(g'(x))^{-2}.g'(x)$$

(A)
$$(g(x))^{-2} g'(x)$$
 (B) $-1(g'(x))^{-2} g(x)$ (C) $(-1(g'(x))^{-2} g'(x))$ (D) $(-1)(g(x))^{-2} g'(x)$

If $f'(a-\varepsilon) < 0$ and $f'(a+\varepsilon) > 0$ then at x=a there is

xvi.
$$1+1+\frac{1}{2}+\frac{1}{3}+\dots+\frac{1}{n}+\dots=$$

$$e^x$$

xvii.

$$l \operatorname{n}(\frac{1}{x} + \frac{\sqrt{1 + x^2}}{|x|}) = ; x \neq 0$$

$$Coth^{-1}x$$

(B)
$$Tanh^{-1}x$$

$$Sech^{-1}x$$

The range of $f(x) = 2 + \sqrt{x-1}$ is

$$(A)$$
 $[-1,\infty)$

$$[2,\infty)$$

$$(-2,\infty)$$

xix. If
$$\frac{1}{\sqrt{x^2-1}} = f'(x)$$
 then $f(x) = \frac{1}{\sqrt{x^2-1}} = f'(x)$

$$Cos^{-1}x$$

$$Sinh^{-1}x$$

$$Cosh^{-1}x$$

$$Cosech^{-1}x$$

$$\int Cot^{-1} \sqrt{\frac{1 + Cos x}{1 - Cos x}} . dx$$

$$\frac{x^2}{2} + c$$

$$\frac{x^2}{4} + c$$

$$\frac{x^4}{2} + c$$

(A)
$$\frac{x^2}{2} + c$$
 (B) $\frac{x^2}{4} + c$ (C) $\frac{x^4}{2} + c$ (D) $\frac{x}{4} + c$

1/5200

Roll No. _____ Annual 2018

Mathematics

(INTER PART II CLASS 12th)

Time: 2:30 Hours

Paper: II

SUBJECTIVE

Marks: 80

Note: Section I is compulsory. Attempt any three Questions from section II.

 $\underline{Section} = \underline{I}$

2. Write short answers to any Eight parts.

(8x 2 = 16)

i. $f(x) = \frac{x}{x^2 - 4}$, find the domain and range of f(x).

ii. Prove the identities $Cosh^2x - Sinh^2x = 1$

iii. Find $f \circ g(x)$ if $f(x) = \frac{1}{\sqrt{x-1}}$, $g(x) = \frac{1}{x^2}$, $x \ne 1$

iv. Define derivative of a function.

v. If $y = \sqrt{x+2}$ find dy/dx from first principle.

vi. Differentiate $\frac{x^2+1}{x^2-3}$ w.r to "x".

vii. Differentiate w. r. to "x" (x-5)(3-x)

viii. Find dy/dx if $x = at^2$ and y = 2at.

ix. Find dy/dx if 3x+4y+7=0

X. Prove that $\frac{d}{dx}(Sin^{-1}x) = \frac{1}{\sqrt{1-x^2}}, x \in (-1,1)$.

xi. Differentiate Sin³x w.r.to Cos²x

Xii. Find f'(x) if $f(x) = e^{\sqrt{x-1}}$

3. Write short answers to any Eight parts.

 $(8 \times 2 = 16)$

i. Find δy and dy if $y = x^2 + 2x$ when x changes from 2 to 1.8.

ii. Evaluate $\int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 dx$, x > 0

iii. Evaluate $\int \frac{ax+b}{ax^2+2bx+c} dx.$

iv. Evaluate $\int \frac{x^2}{4+x^2} dx$

V. Evaluate $\int \frac{1}{(1+x^2) T \operatorname{an}^{-1} x} dx$

vi. Evaluate $\int x \ln x \, dx$

vii. Evaluate $\int \frac{xe^x}{(1+x)^2} dx$

viii. Evaluate $\int_{0}^{\pi/4} Secx(Secx + \tan x) dx$

ix. Find the area bounded by the curve $y = x^3 + 2x^2$ and x - axis.

 $x. \quad Solve \ ydx + xdy = 0$

xi. Define a corner point or vertex of solution region.

xii. Graph the inequality x + 2y < 6.

(2)

4. Write short answers to any Nine parts.

 $(9 \times 2 = 18)$

- i. Find h such that the points A (h, 1), B (2, 7) and C (-6, -7) are vertices of a right triangle with right angle at vertex A.
- ii. Find the point three-fifth of the way along the line segment from A (-5, 8) to B (5, 3).
- iii. Find the equation of the line through (-4, -6) and perpendicular to a line having slope $\frac{-3}{2}$.
- iv. Find the area of the region bounded by the triangle with vertices (a, b+c), (a, b-c) and (-a, c).
- V. Show that lines 4x-3y-8=0, 3x-4y-6=0 and x-y-2=0: are concurrent.
- vi. Find the direction cosines of vector $\underline{y} = 4\underline{i} 5\underline{j}$
- vii. Calculate the projection of the vector $\underline{a} = \underline{i} \underline{k}$ along vector $\underline{b} = \underline{j} + \underline{k}$.
- viii. Find area of parallelogram whose vertices are P(0,0,0), Q(-1,2,4), R(2,-1,4), S(1,1,8).
- ix. Find value of " α " so that $\alpha \underline{i} + \underline{j}$, $\underline{i} + \underline{j} + 3\underline{k}$ and $2\underline{i} + \underline{j} 2\underline{k}$ are coplaner.
- X. Find vertex and directrix of the parabola, $x^2 = 4(y-1)$.
- xi. Find equation of the parabola with focus (2,2) and directrix x = -2.
- xii. Find equation of ellipse with foci (± 3,0) and minor axis of length 10.
- xiii. Find the foci and vertices of the ellipse $25x^2 + 9y^2 = 225$.

Section = II

Note: Attempt any three questions

 $(10 \times 3 = 30)$

5. (a) Find m and n so that the given function "f" is continuous at x = 3

$$f(x) = \begin{cases} mx & if \quad x < 3 \\ n & if \quad x = 3 \\ -2x + 9 & if \quad x > 3 \end{cases}$$

- (b) If $y = (Cos^{-1}x)^2$, prove that $(1-x^2)$ $y_2 xy_1 2 = 0$
- 6. (a) Evaluate the indefinite integral using partial fraction $\int \frac{2x^3 3x^2 x 7}{2x^2 3x 2} dx$
 - (b) Find a joint equation of the lines through the origin and perpendicular to the lines represented by $x^2 2xy \tan \alpha y^2 = 0$
- 7. (a) Find the area between the x axis and the curve $y = \sqrt{2ax x^2}$ when a > 0.
 - (b) Minimize z = 3x + y; subject to the constraints $3x + 5y \ge 15$; $x + 6y \ge 9$, $x \ge 0$, $y \ge 0$.
- 8. (a) Write an equation of the circle that passes through the given points A(-7,7), B(5,-1), C(10,0)
 - (b) Prove that in any triangle $\triangle ABC$, $C = a \cos B + b \cos A$.
- 9. (a) Find the centre, foci, eccentricity vertices and equations of directrices of $\frac{y^2}{16} \frac{x^2}{9} = 1$
 - (b) Find a unit vector perpendicular to the plane containing \underline{a} and \underline{b} . Also find the "sine" of the angle between them.