				2490 CM (24 1998C) W
			MTA	1-12-G,-1
aper Code	2019 (A)	Roll No:	
umber: 4195	INTERMEDIATE PA	RT-II (12th	CLASS)	
TATHEMATICS PAP	ER-II		TIME ALLOW	ED: 30 Minutes
ROUP-1	OBJECTIV	<u>′E</u>	MAXIMUM N	1ARKS: 20
lote: You have four choices	s for each objective type qu	iestion as A, B	, C and D. The cl	roice which you
nink is correct, fill that bubb outting or filling two or more	de in front of that question	number. Use	marker or pen to question. Attemp	till the bubbles.
uestions as given in objectiv	e type question paper and	leave others bl	ank. No credit w	ill be awarded in
ase BUBBLES are not filled	. Do not solve questions of	n this sheet of	OBJECTIVE PA	PER.
).No.1				
$(1) \qquad \int_{1} 2x dx =$	Ti di	(A) 3	(B) 2 (C) 1	(D) 0
$(2) \qquad \int_{-\infty}^{2} \frac{1}{x} dx =$		(A) 2 <i>lnx</i>	(B) ℓn2 (C) ℓ	n(1) (D) ln3
J.x				
$(3) \qquad \int 5^{2x} dx =$	(A) 5^{2}	$(B) \ 2(5^2)$	(x) (C) $5^{2x} \ln 5$	(D) $2(5^{2x} \ell n5)$
(4) Distance of line $x +$	2y + 5 = 0 from origin is:-	(A) 1 (B) √5 (C) 5	(D) 2
	ular from (1, 1) to the line			
(A) 2	(B) 4		(D) 9	
	al line through (2, 3) is:-		1000 000 0	x = 3 (D) $x = 2$
			(B) 1 (C	
(7) Slope of vertical lin		497.88		
(8) If $3x + 2y \le 6$, po				
$(9)^{1+11}$ Radius of circle x^2	$+ y^2 - 4x - 6y = 0$ is:-	(A) $\sqrt{1}$	B) √11 (C) √5 (D) 13
(10) Directrix of parabol	$\ln x^2 = 20y \text{ is:-} \tag{A}$	A) x = 10 (B) $x = 5$ (C) y	= -5 (D) $x = -5$
(1d) ψ Parabola $\kappa^2 = -8$)	opens:-			
(A) Rightwards	(B) Leftwards	(C) Upwards	(D) Dow	nwards
(12) Magnitude of vector	6i + 3j - 2k is:-	(A) 7 (f	3) 6 (C) 3	(D) - 2
(13) Direction cosines of	y – axis are:-			
(A) 0, 0, 1	(B) 1, 0, 0	(C) 0, 1, 0	(D) $\frac{1}{\sqrt{3}}$	$\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
(14) If $f(x) = x^3 + x$	then $f(x)$ is:-			
(A) Constant function		(C) Odd func	tion (D) Impl	icit function
(15) $\lim_{x \to 4} \frac{x^2 - 6x + 8}{x - 4}$	=	(A) 4 (B) 2 (C) 6	(D) 8
	sin r represents:- (A) I	Line (B) Cire	cle (C) Ellipse	(D) Hyperbola
$(17) \qquad \text{If} f(x) = \sin x,$			(B) 1 (C) 2	
$(18) \frac{d}{dx}(\coth x) =$	$(A) - \cos u c h^2 x$	(B) $cosech^2x$	(C) $\tan h^2 x$ (D) $\coth x \sec hx$
$(19) \qquad \frac{d}{dx}(e^{x^2}) =$		(A) e^{x^2}	(B) $2e^{x^2}$ (C) $2e^{x^2}$	xe^{x^2} (D) $2e^x$
$(20) \qquad \int \frac{\sin 2x}{4\sin x} dx =$	(A) $\sin 2x + c$ (E	3) $2\sin 2x + c$	$(C) \frac{1}{2} \sin x + c$	(D) $2\sin x + c$
and the state	14	(Obj)(᠘᠘		(MULTAN)
28			•	

· 1 4.0 · 4.0 · 4.

MATHEMATICS PAPER-II

SUBJECTIVE

TIME ALLOWED: 2.30 Hours MAXIMUM MARKS: 80

GROUP-I NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

2. 'Attempt any eight parts.

 $8 \times 2 = 16$

- Find the domain and range of $f(x) = \sqrt{x^2 4}$ (i)
- If f'(x) = 2x + 1, $g(x) = x^2 1$, find g of (x)(ii)
- Evaluate $\lim_{x \to 0} \frac{1 \cos x}{\sin^2 x}$ (iii)
- Differentiate $\frac{x^2 + 1}{x^2 3}$ w.r.t x (iv)
- If $y = x^4 + 2x^2 + 2$, then show that $\frac{dy}{dx} = 4x\sqrt{y-1}$ (v)
- Find $\frac{dy}{dx}$ if $y^2 xy x^2 + 4 = 0$ (vi)
- Differentiate $x^2 \frac{1}{x^2}$ w.r.t x^4 (vii)
- (viii) If $y = \sin^2 x$, $u = \sin x$, then find $\frac{dy}{dx}$
- Find $\frac{dy}{dx}$ if $y = x \cos y$ (ix)
- Find f'(x) = ?, if $f(x) = \ln(e^x + e^{-x})$ (x)
- (ki) Define Critical Value
- State the Maclaurin's Series.

$8 \times 2 = 16$

- Attempt any eight parts.
- Find δy if $y = x^2 + 2x$ when x changes from 2 to 1.8. (i)
- Evaluate $\int \frac{dx}{\sqrt{x+1}-\sqrt{x}}$, x>0
- Evaluate $\int \sqrt{1-\cos 2x} \, dx$, $1-\cos 2x > 0$ (iii)
- Evaluate $\int \frac{x}{\sqrt{4+r^2}} dx$
- Evaluate $\int \frac{dx}{\sqrt{a^2 x^4}} dx$
- Evaluate $\int (\ln x)^2 dx$
- Evaluate $\int \frac{x}{x^2 + 2} dx$ (vii)
- Solve $\sec x + \tan y \frac{dy}{dx} = 0$ (ix)
- Find the area between the x-axis and the curve $y = \cos \frac{x}{2}$ from $x = -\pi$ to π . (x)
- Draw the graph and shade solution region for $5x 4y \le 20$
- Define Optimal Solution.

Attempt any nine parts.

 $9\times 2=18$

- (i) Find the mid point of the line segment joining the points $\left(-\sqrt{5}, -\frac{1}{3}\right)$ and $\left(-3\sqrt{5}, 5\right)$
- (ii) Find 'K' so that line joining the points A(7,3) and B(K,-6) has a slope $\frac{1}{2}$.
- (iii) Find the equation of line passing through the point (-9, 0) and has a slop -4.
- (iv) Define 'Homogeneous equation' of degree n where 'n' is a positive integer.
- (v) Find the equation of circle with centre (-3, 5) and radius 7.
- (vi) Find the coordinates of vertex and focus of the parabola $x^2 = 4(y 1)$
- (vii) Find the equation of Ellipse having foci (±3, 0) and minor axis of length 10.
- (viii) Find the coordinates of foci and vertices of Hyperbola $\frac{x^2}{4} \frac{y^2}{9} = 1$
- (ix) Define "Position Vector" of a point..
- (x) If $|\alpha \underline{i} + (\alpha + 1) \underline{j} + 2\underline{k}| = 3$, then find value of '\alpha'.
- (xi) Find ' α ' so that the vectors $2\underline{i} + \alpha \underline{j} + 5\underline{k}$ and $3\underline{i} + \underline{j} + \alpha \underline{k}$ are perpendicular.
- (xii) Find $\underline{\alpha} \times \underline{b}$ if $\underline{a} = 2\underline{i} + \underline{j} \underline{k}$ and $\underline{b} = \underline{i} \underline{j} + \underline{k}$
- (xiii) Prove that the vectors $\underline{i} 2\underline{j} + 3\underline{k}$, $-2\underline{i} + 3\underline{j} 4\underline{k}$ and $\underline{i} 3\underline{j} + 5\underline{k}$ are coplanar.

SECTION-II

NOTE: - Attempt any three questions.

 $3 \times 10 = 30$

- 5.(a) Prove that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$, θ is measured in radians.
 - (b) Find the extreme values for the function $f(x) = (x-2)^2 (x-1)$
- 6.(a) Show that $\int \sqrt{a^2 x^2} \, dx = \frac{a^2}{2} Sin^{-1} \frac{x}{a} + \frac{x}{2} \sqrt{a^2 x^2} + c$
 - (b) The points (4, -2), (-2, 4) and (5, 5) are the vertices of a triangle. Find in-centre of the triangle.
- 7. (a) Evaluate $\int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{Sin^{-1}x}{\sqrt{1-x^2}} dx \qquad x \neq 1, -1$
 - (b) Graph the feasible region of the following system of linear inequalities and find the corner points

$$2x - 3y \le 6$$

$$2x+3y\leq 12$$

$$x \ge 0$$

$$y \ge 0$$

- 8. (a) Find an equation of the line through the intersection of the lines x y 4 = 0 and 7x + y + 20 = 0 and parallel to the line 6x + y 14 = 0
 - (b) Show that the circles $x^2 + y^2 + 2x 2y 7 = 0$ and $x^2 + y^2 6x + 4y + 9 = 0$ touch externally.
- 9.(a) Find an equation of the parabola having focus at (-3, 1) and directrix is x = 3.
- (b) Prove that the line segment joining the mid points of the sides of a quadrilateral taken in order form a parallelogram.

14-2019(A)-18000 (MULTAN)

	1 10 20				
1	9			MTN-	12-9=
Paper Code	2	019 (A)	Roll No	:	
Number: 14192	INTERMEDIAT	E PART-II (1:		5005	
MATHEMATICS	PAPER-II			LLOWED:	
GROUP-II		CTIVE		UM MARK	
think is correct, fill tha Cutting or filling two o questions as given in ol	choices for each objective ty t bubble in front of that qu r more bubbles will result i bjective type question paper t filled. Do not solve questi	estion number. In zero mark in t Ir and leave other	Use marker o hat question. 's blank. No c	r pen to fill th Attempt as m credit will be	ie bubbles. iany
(1) If $f(x) = x^2$	$f(x) = \frac{1}{2} + \cos x$, then $f(x)$ is:-				
(A) Constant t	function (B) Even functi	on (C) Odd fo	unction (D) Linear func	tion
(2) If $f(x) = x^3$	$-2x^2 + 4x - 1$, then $f(-2x^2 + 4x - 1)$	-2):- (A)	14 (B) - 14	(C) - 25	(D) 25
$(3) \qquad \frac{d}{dx}(4x+7)^9$					
(A) $36(4x +$	(B) 36(4x + 7)) ⁹ (C) 28(4)	$(r+7)^8$ (E	0) $63(4x + 7)$)8
(4) If $f(x) = 2^2$	f'(x) =				
(A) 2^{2x-1}	(B) $2^{2x} \ell n2$	(C) 2^{2x} +	¹ ln 2 (I	$0) \frac{2^{2x}}{\ell n 2}$	•
$(5) \qquad \frac{d}{dx} \bigg(Cos^{-1} \frac{x}{a} \bigg)$)=			0	
$(A) \frac{1}{1-x^2}$	$(B) \frac{1}{1+x^2}$	(C) $\frac{1}{\sqrt{a^2}}$	$\frac{1}{-x^2} \qquad (1$	$\frac{-1}{\sqrt{a^2-x^2}}$	22 78
(6) If f(x) = x	f''(1) =		(B) 9	(C) 10	(D) 100
$(7) : \int \frac{1}{x^2} dx = $	(A) $lnx + c$	(B) $\ell nx^2 + c$	$(C) \frac{-2}{x^3} + c$	(D) $\frac{-1}{x}$ +	c
(8) $\int \tan \frac{\pi}{4} dx =$	0.0	+c (B)			(D) 1
(9) $\int \sec^2 2x dx$	$= (A) \frac{1}{2} \tan 2x$	(B) $\tan 2x$ ((C) $\frac{1}{2} \tan x$	(D) $2 \tan 2x$	
2 1.4 14 3/1	2		L		
- 2			220	7723472	
$(10) \int \cos x dx =$	(A) 0	(B) 1 (C	C) - 1	(2) 2	
(11) Distance of	line $5x + 12y + 39 = 0$ from	m(0,0) is:-	(A) 3	(B) 5 (C)	12 (D) 39
(12) Equation of	horizontal line through (a,				
(A) $y = a$	(B) $y = b$	(C) $x = $		(D) x = b	
(13) The line ax (A) $a = 0$	c + by + c = 0 will represent (B) $b = 0$	equation of strain $(C) c =$	ght line paralle 0	el to $y - axis$ (D) $a = b$	if:-
(14) Point $\left(+\frac{3}{7}\right)$	$(A) = \frac{5}{7}$ lies in:- (A)	I quadrant (B) II	quadrant (C)) III quadrant	(D) IV quadra
(15) The point (1) (A) $x + 2y$	1, 2) satisfies the inequality: 3 (B) $x - 2y > $ ircle $x^2 + y^2 + 4x + 2y - $	- - 3 (C) x -	2 <i>y</i> > 5	(D) $x + 2y <$	3
(16) Radius of c	ircle $x^2 + y^2 + 4x + 2y -$	4 = 0 is:- (A) 3 (B) 2	(C) 4	(D) l

(C) x = 2

(A) 3 (B) 0 (C) -2 (D) 1 $(20) \quad (\underline{k} \ [\underline{i}^{*}]\underline{f}] =$

Latus rectum of parabola $x^2 = 8y$ is: (A) y = -2 (B) y = 2

(17)

INTERMEDIATE PART-II (12th CLASS)

MATHEMATICS PAPER-II

GROUP-II

SUBJECTIVE

TIME ALLOWED: 2.30 Hours MAXIMUM MARKS: 80

NOTE: - Write same question number and its part number on auswer book,

SECTION-I

2. Attempt any eight parts.

(i) Find the domain and range of f(x) = |x-3|

(ii) If
$$f(x) = 3x^4 - 2x^2$$
, $g(x) = \frac{2}{\sqrt{x}}$, $x \neq 0$, find $gof(x)$

(iii) Evaluate
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\sin \theta}$$

(iv) Differentiate
$$\frac{2x-3}{2x+1}$$
 w.r.t x.

(v) If
$$y = (x-5)(3-x)$$
, then find $\frac{dy}{dx}$

(vi) If
$$x^2 + y^2 = 4$$
, then show that $\frac{dy}{dx} = \frac{-x}{\sqrt{4 - x^2}}$

(vii) Differentiate
$$(1 + x^2)^n$$
 w.r.t x^2

(viii) If
$$y = \sin x$$
, $u = \cot x$, then find $\frac{dy}{du}$

(ix) Show that
$$\frac{dy}{dx} = \frac{y}{x}$$
, if $\frac{y}{x} = Tan^{-1} \frac{y}{x}$

(x) Find
$$f'(x)$$
, if $f(x) = e^{\sqrt{x} - 1}$

(xi): Define Critical Point.

(xii) State the Taylor's Series.

3. Attempt any eight parts.

Find δy if $y = \sqrt{x}$ when x changes from 4 to 4.41

(ii) Evaluate
$$\int \frac{3 - \cos 2x}{1 + \cos 2x} dx \qquad (\cos 2x \neq -1)$$

(iii) Evaluate
$$\int \frac{(1+e^x)^3}{e^x} dx$$

(iv) Evaluate
$$\int \frac{\cot \sqrt{x}}{\sqrt{x}} dx, \quad x > 0$$

(v) Evaluate
$$\int \frac{\sec^2 x}{\sqrt{\tan x}} dx$$

(vi) Evaluate
$$\int x \sin x \, dx$$

(vii) Evaluate
$$\int_{-2}^{0} \frac{1}{(2x-1)^2} dx$$

(viii) Evaluate
$$\int_{0}^{2} \ln x \, dx$$

(ix) Solve
$$\sin y \cos ec x \frac{dy}{dx} = 1$$

(x) Find Area bounded by cos function from
$$x = \frac{-\pi}{2}$$
 to $x = \frac{\pi}{2}$

(xi) Graph the Solution Region for
$$3x - 2y \ge 6$$

 $8\times2=16$

 $8 \times 2 = 16$

90.COM

(2)

Attempt any nine parts.

4.

 $9 \times 2 = 18$

- 1 (i) Find the co-ordinates of the point that divides the join of A(-6, 3) and B(5, -2) in the ratio 2:3 internally.
- (ii) Convert equation 4x + 7y 2 = 0 into two intercepts form.
- (iii) Show that the point (-2, 4) lies above the line 4x + 5y 3 = 0.
- (iv) Define 'Medians' of triangle.
- (v) Find the slope of tangent to circle $x^2 + y^2 = 25$ at point (4, 3).
- (vi) Find the co-ordinates of vertex and focus of the parabola $y = 6x^2 1$
- (vii) Find the equation of the Ellipse with foci $(\pm 3\sqrt{3}, 0)$ and vertices $(\pm 6, 0)$
- (viii) Find the equation of the Hyperbola with the centre (0,0) Foci $(\pm 6,0)$ and Vertices $(\pm 4,0)$
- (ix) If $\overrightarrow{AB} = \overrightarrow{CD}$, Find the coordinates of the point A when points B, C, D are (1, 2), (-2, 5), (4, 11) respectively.
- (x) Find a vector of length 5 in the direction opposite that of $\underline{v} = \underline{i} 2\underline{j} + 3\underline{k}$.
- (xi) Find value of ' α ' so that vectors $\alpha \underline{i} + 2\alpha \underline{j} + \underline{k}$ and $\underline{i} + \alpha \underline{j} + 3\underline{k}$ are perpendicular.
- (xii) Define direction angles of a vector.
- (xiii) Find $\underline{u} \cdot (\underline{v} \times \underline{w})$ when $\underline{u} = [3, 0, 2]; \underline{v} = [1, 2, 1]$ and $\underline{w} = [0, -1, 4]$

SECTION-II

NOTE: - Attempt any three questions.

 $3 \times 10 = 30$

5.(a) Evaluate
$$\lim_{\theta \to 0} \frac{\tan \theta - \sin \theta}{\sin^3 \theta}$$

- (b) If $x = a \cos^3 \theta$, $y = b \sin^3 \theta$ show that $a \frac{dy}{dx} + b \tan \theta = 0$
- 6.(a) Evaluate $\int \frac{7x-1}{(x-1)^2 (x+1)} dx$ x > 1
 - (b) Find equations of the altitudes of the triangle whose vertices are A(-3, 2), B(5, 4), C(3, -8)
- 7. (a) Determine the area bounded by the parabola $y = x^2 + 2x 3$ and the x axis.
 - (b) Graph the feasible region of the following system of linear inequalities

$$3x + 7y \le 21$$

$$x - y \le 3$$

$$x \ge 0$$

$$y \ge 0$$

- 8. (a) Find the lines represented by $3x^2 + 7xy + 2y^2 = 0$. Also find measure of the angle between them.
 - (b) Find an equation of the circle that passes through A(4,5), B(-4,-3), C(8,-3)
- 9.(a) Show that the equation $9x^2 18x + 4y^2 + 8y 23 = 0$ represents an ellipse. Find its elements.
 - (b) Using vector method, in any triangle ABC prove that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

16-2019(A)-6000 (MULTAN)