Roll No.	of Candidate			
MATHEMATICS Time: 30 Minutes		Intermediate Part-II , OBJ Coc	GROUP: I PAPER: II Marks: 20	
Note:	correct, fill that circl filling of two or mor	es for each objective type q e in front of that question n e circles will result in zero	uestion as A, B, C and D. The umber. Use marker or pen to f	choice which you think is
1- 1-	$\int Secx Tanx dx =$ (A) $Secx + c$	(B) $Sec^2x + c$	(C) $Tanx + c$	(D) $\ln Secx + tanx + c$
2-	The focus of par $(A)(0,-4)$	abola $x^2 = -16y$ is (B) (0, 0)	(C) (4,0)	(D) (-4,0)
3-	$\int_{0}^{2} x dx is$		10.	
	(A) 0	(B) 1	(C) 2	(D) 4
4- 5-	Derivative of y: (A) tangent line	= $f(x)$ at $x = a$ represents s at $x = a$ (B) secant line ctor \underline{y} along vector \underline{u} is	slope of (C) perpendicular line	(D) straight line
	(A) $\frac{\underline{\mathbf{u}} \cdot \underline{\mathbf{v}}}{ \underline{\mathbf{u}} }$	(B) $\frac{\underline{\mathbf{u}} \cdot \underline{\mathbf{v}}}{ \underline{\mathbf{v}} }$	(C) $\frac{\underline{\mathbf{u}} \cdot \underline{\mathbf{u}}}{ \underline{\mathbf{u}} }$	(D) $\frac{\underline{\mathbf{v}} \cdot \underline{\mathbf{v}}}{ \underline{\mathbf{v}} }$
6-	Which one is tru (A) $\underline{i} \times \underline{i} = \underline{i}$	(B) $\underline{i} \cdot \underline{i} = \underline{i}$	(C) $\underline{\mathbf{k}} \times \underline{\mathbf{k}} \neq 0$	(D) $\underline{\mathbf{k}} \times \underline{\mathbf{i}} = -\mathbf{j}$
7-	$(A) y^2 = 8x$	tion represents a circle? (B) $3x^2 + 3y^2 = 9$ int-slope form of a straig.	(C) $3x^2 + 5y^2 = 9$	(D) $x^2 - 2y = 0$
8-	(A) y = mx + c	(B) $y - y_1 = m$ (x-	V V	(D) $\frac{x}{a} - \frac{y}{b} = 1$
9-	Order of differen	ntial equation $\frac{d^2y}{dx^2} + \frac{dy}{dx}$	2x = 0 is	(T) 2
	(A) 1	(B) 0	(C) 2	(D) 3
10-	(A)(0,2)	which $f(x) = 4 - x^2$; $x \in (7 + 2)$	(C)(-2,2)	(D) (0, 1)
11-		$(x) = \frac{x^2 - 1}{x - 1}$ is not defined a		(D) 1
12-	(A) $x = 0$ If $f(x) = x^{2/3}$, the	(B) $x=1$ e f'(8) is	(C) $x = 2$	(D) $x = -1$
	(A) 3	(B) $\frac{1}{3}$	(C) $\frac{2}{3}$	(D) $\frac{1}{2}$
13-	$\int \frac{f'(x)}{f(x)} dx = ?$. /		
	$(A) \ln x + c$	$\int (B) \ln f(x) + c$	(C) $\ln f'(x) + c$	(D) $\ln f(x) \cdot f'(x) + c$
14-	(A) 2	e passing through the point (B) 0	ats $(0, -1)$ and $(7, -15)$ is (C) 1	(D) -2
15-	$\lim_{x \to -\infty} (e^x) = ?$ (A) ∞	/ (B) -∞	(C) 1	(D) 0
16-		(B) -1	(C) 0	(D) <u>v</u>
17-	Which point is t	not solution of inequality (B) $(0, -1)$	(C)(14,0)	(D) (-4, 0)
18-	Major axis of el	lipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with (a	> b) is	
	$(\mathbf{A})\mathbf{x} = 0$	(B) y = 0	(C) x = 1	(D) $y = 1$
19-	Derivative of T $(A) \frac{1}{1-x^2}$	an ⁻¹ x w.r.t. x is (B) $\frac{1}{x^2-1}$	(C) $\frac{1}{1+x^2}$	(D) $1+x^2$
20-/	$ \begin{array}{c c} & 1-x^2 \\ \hline & \text{Distance of line} \\ & (A) 3 \end{array} $	$x^2 - 1$ 5x + 12y + 39 = 0 from (B) 5		(D) 39 313-(IV)-1 st A 424-25000

WATHEMATICS

Intermediate Part-II, Class 12th (1stA 424)

Time: 2:30 hours

SUBJECTIVE GOVENING

360.com

GROUP: I PAPER: II Marks: 80

Note: Section I is compulsory. Attempt any three (3) questions from Section II. SECTION I

2. Write short answers to any EIGHT questions:

Let $f(x) = x^2 - x$, find the value of f(x - 1).

ii- State the domain and range of f^{-1} if $f(x) = \frac{1}{x+3}$

iii- Evaluate $\lim_{x\to\pi} \frac{\sin x}{\pi - x}$

iv- Express $\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^{2n}$ in term of e.

v- Differentiate $\frac{x^2+1}{x^2-3}$ w.r.t. 'x'

vi- Find $\frac{dy}{dx}$ if $x = at^2$ and y = 2at

vii- Prove that $\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$

viii- Differentiate $\left(\cos\sqrt{x} + \sqrt{\sin x}\right)$ w.r.t 'x'

ix- Find $\frac{dy}{dx}$ if $y = \sin h^{-1}(ax + b)$

x- Find $\frac{dy}{dx}$ if $y = log_{10}(ax^2 + bx + c)$

xi- Find f'(x) if f(x) = $\frac{e^x}{e^{-x} + 1}$

xii- Define a stationary point.

3. Write short answers to any EIGHT questions:

i- Use differential to find $\frac{dy}{dx}$, if $xy - \ln x = c$

ii- Evaluate
$$\int \frac{(1-\sqrt{x})^2}{\sqrt{x}} dx$$
, $(x>0)$

iii- Find Secx dx

iv- Integrate $\int \sin^{-1} x \, dx$

v- Evaluate $\int e^x (\cos x - \sin x) dx$

vi- Calculate $\int_{1}^{2} \frac{x}{x^2 + 2} dx$

vii- Solve the differential equation $\frac{dy}{dx} = \frac{1-x}{y}$

viii- Find an equation of vertical line through (-5, 3).

ix- Write the equation of line in two intercepts form.

x- Convert 15y - 8x + 3 = 0 in slope intercept form.

xi- Find the equation of line passing through A(-6, 5) having slope 7.

xii- Show that the points A(-1, 2), B(7, 5) and C(2, -6) are vertices of right triangle.

 $(2 \times 8 = 16)$

 $(2 \times 8 = 16)$

6

(Turn over)

Check the position of point (5, 6) with respect to circle: $2x^2 + 2y^2 + 12x - 8y + 1 = 0$

Write short answers to any NINE questions:

Derive equation of circle in standard form.

Write an equation of circle with centre (-3, 5) and radius 7.

Find equation of hyperbola with foci $(0, \pm 9)$, directrices $y = \pm 4$.

i- What is feasible region?

 $(2 \times 9 = 18)$

Find the focus and directrix of the parabola if $x^2 = 5y$. Find an equation of ellipse with foci (±3,0) and minor axis length 10. vii-Indicate the solution set of system of linear inequality by shading $4x - 3y \le 12$; $x \ge -\frac{3}{2}$ Define equal vector, give an example. Find the magnitude and direction cosines of $\underline{v} = 4\underline{i} - 5\underline{j}$ Find scalar " α " so that the vectors $2\underline{i} + \alpha \underline{j} + 5\underline{k}$ and $3\underline{i} + \underline{j} + \alpha \underline{k}$ are perpendicular. Which vectors, if any, are parallel or perpendicular $\underline{\mathbf{u}} = \underline{i} + 2\underline{\mathbf{j}} - \underline{\mathbf{k}} \text{ , } \underline{\mathbf{v}} = -\underline{i} + \underline{\mathbf{j}} + \underline{\mathbf{k}} \text{ , } \underline{\mathbf{w}} = \frac{-\pi}{2}\underline{i} - \pi\underline{\mathbf{j}} + \frac{\pi}{2}\underline{\mathbf{k}}$ Prove that the vectors $\underline{i} - 2\underline{j} + 3\underline{k}$, $-2\underline{i} + 3\underline{j} - 4\underline{k}$ and $\underline{i} - 3\underline{j} + 5\underline{k}$ are coplanar. (a) Evaluate $\lim_{\theta \to 0} \frac{\tan \theta - \sin \theta}{\sin^3 \theta}$ 5 (b) If $\tan y(1 + \tan x) = 1 - \tan x$, show that $\frac{dy}{dx} = -1$ 5 5 6- (a) If $x = \sin \theta$, $y = \sin m\theta$, show that $(1-x^2)y_2 - xy_1 + m^2y = 0$ 5 **(b)** Evaluate $\int \frac{\sqrt{2}}{\sin x + \cos x} dx$ 5 (a) Evaluate $\int_{0}^{\frac{\pi}{4}} \frac{1}{1+\sin x} dx$ (b) Maximize f(x,y) = 2x + 5y, subject to the constraints $2y - x \le 8$; $x - y \le 4$; $x \ge 0$; $y \ge 0$. 5 (a) Find the length of the chord cut off from the line 2x + 3y = 13 by the circle $x^2 + y^2 = 26$. 5 5 (b) Prove that in any $\triangle ABC$, $b^2 = c^2 + a^2 - 2ca \cos B$ (a) Find the interior angles of a triangle with vertices A(-2,11), B(-6,-3) and C(4,-9)5 Find the centre, foci, eccentricity, vertices and directrices of the Ellipse $x^2 + 4y^2 = 16$ 5 313-1stA 424-25000

Rol	l No.	of Candidate			
Time: 30 Minutes OBJ		termediate Part-II , Cla OBJECT Code: 8	11VE 1198 GVJ->->		
Not	e:	is correct, fill that circle	or each objective type quest in front of that question nun circles will result in zero m	nber. Use marker or pen t	choice which you think o fill the circles. Cutting
1-	1-	Differential of \sqrt{x} is			1
		(A) $\frac{1}{\sqrt{x}}$ dx	(B) $\frac{2}{\sqrt{x}}dx$	(C) $\frac{1}{2\sqrt{x}}$ dx	(D) $\frac{-1}{\sqrt{x}} dx$
	2-	If $a = b$ then equation	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ represent}$		
		(A) Ellipse	(B) Circle	(C) Parabola	(D) Hyperbola
	3-	Degree of differential	equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 3x =$	= 0 is	/ · · ·
		(A) 0	(B) 2	(C) 1	(D) 3
	4-	$\frac{d}{dx}(\sin \ln x) = ?$			•
		$(A) \frac{e^x - e^{-x}}{2}$	$(B) \frac{e^x + e^{-x}}{2}$	(C) $e^{x} - e^{-x}$	(D) $e^x + e^{-x}$
	5-	Magnitude of a vector	-	5/_	(C) (F
	6-	(A) aIf dot product of two(A) perpendicular	(B) $\sqrt{2}$ non-zero vectors is zero t (B) parallel	(C) $-\sqrt{2}$ then vectors will be (C) collinear	(D) $\sqrt{3}$ (D) all of these
	7-	Length of latus ractur	m of parabola $y^2 = 4ax$ is		
		(A) 2a	(B) 4ax	(C) 4a	(D) $\frac{1}{2a}$
	8-	Every homogeneous	equation $ax^2 + 2hxy + by^2$	= 0 represent two real li	nes through origin if
		$(A) h^2 - ab < 0$	(B) $h^2 - ab > 0$	(C) $h^2 = ab$	(D) both (B) and (C)
	9-	If α is constant then (A) Sin α + c	$(B) - \sin\alpha + c$	(C) $xSin\alpha + c$	(D) $ycot\alpha + c$
	10-	If $f(x) = Cosx$, then	$\left(\frac{\pi}{2}\right)$ is		
		(A) -1	(B) 1	(C) 0	(D) $\frac{1}{2}$
	11-	$\lim_{x \to a} \frac{x^3 - a^3}{x - a} = ?$			
	11-	$\begin{array}{ccc} A & A & A & A \\ A & A & A & A \end{array}$ (A) $3a^2$	(B) a ²	(C) 0	(D) un-defined
	12-	Derivative of \sqrt{x} at (A) $\frac{1}{\sqrt{a}}$	$x = a \text{ is}$ $(B) -\frac{1}{2\sqrt{a}}$	(C) $\frac{1}{2\sqrt{a}}$.(D) 2√a
		/ /		for the second	(Turn over)

13-	$\int \frac{\ln x}{x} dx$ is equal to
1. 5	JX

- $(A) \ln (\ln x) + c$
- (B) $\frac{(\ln x)^2}{2} + c$
- (C) $\ln x + c$
- (D) $\frac{\ln x}{2}$ + o

14- Slope intercept form of a line is

- (A) y = mx + c
- (B) $\frac{x}{a} + \frac{y}{b} = 1$
- (C) x = 0
- (D) y = 0

15- The function $f(x) = \frac{2+3x}{2x}$ is not continuous at

- (A) x = 3
- (B) x = 0
- (C) $x = \frac{2}{3}$
- (D) x = 1

16- $\frac{1}{6}[\underline{u} \ \underline{v} \ \underline{w}]$ is formula to calculate

- (A) area of triangle
- (C) volume of tetrahedron
- 17- (2, 1) is solution of in-equality
 - (A) 2x + y > 5
- (B) x 2y > 1
- (B) volume of parallelpipped
- (D) area of parallelogram
- (C) 3x 5y < 7
- (D) 2x + y < 5

18- Eccentricity of hyperbola is

- (A) e < 1
- (B)e=0
- (C) e = 1
- (D) e > 1

19- $\frac{d}{dx} \left[\frac{1}{g(x)} \right]$ is equal to

- $(A) \frac{1}{[g(x)]^2}$
- $(B) \frac{-g'(x)}{g(x)}$
- (C) $\frac{-1}{[g(x)]^2}$
- (D) $\frac{-g'(x)}{[g(x)]^2}$

20- Distance of point (Cos3x, Sin3x) from origin is

(A)

- (B) 6
- (C)3
- (D) 1

314-(IV)-1stA 424-24000

 $(2 \times 8 = 16)$

 $(2 \times 8 = 16)$

SUBJECTIVE GUJ-2-24

360.com

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

SECTION I

2. Write short answers to any EIGHT questions:

i- Define rational function. Give one example also.

ii- Find gof(x), when
$$f(x) = \sqrt{x+1}$$
; $g(x) = \frac{1}{x^2}$, $x \ne 0$

iii- Evaluate
$$\lim_{\theta \to 0} \frac{1 - \cos\theta}{\theta}$$

iv- Find 'c' so that
$$\lim_{x\to -1} f(x)$$
 exists, when $f(x) = \begin{cases} x+2, & x \le -1 \\ c+2, & x > -1 \end{cases}$

v- Differentiate
$$(x^2 + 5)(x^3 + 7)$$
 w.r.t x.

vi- Find derivative of $Tan^3\theta Sec^2\theta$ w.r.t θ .

vii- Find
$$\frac{dy}{dx}$$
, if $y = \sinh^{-1}\left(\frac{x}{2}\right)$

viii- Define critical value and critical point of function f.

ix- Differentiate
$$Cot^{-1}\left(\frac{x}{a}\right)$$
 w.r.t x.

x- Find derivative of
$$\frac{x^2+1}{x^2-3}$$
 w.r.t x.

xi- State product rule for derivative of two functions.

3. Write short answers to any EIGHT questions:

i- Find δy if $y = x^2 - 1$ and x changes from 3 to 3.02

ii- Evaluate
$$\int \frac{(1-\sqrt{x})^2}{\sqrt{x}} dx$$

iii- Evaluate
$$\int \frac{dx}{x(\ln 2x)^3}$$
; $(x > 0)$

iv- Evaluate
$$\int x \tan^2 x dx$$

V- Evaluate
$$\int \frac{e^x(1+x)}{(2+x)^2} dx$$

vi- Evaluate
$$\int_{0}^{\pi/6} x \cos x \, dx$$

vii- Solve the differential equation Sin y Cosec x
$$\frac{dy}{dx} = 1$$

viii- Find the distance and midpoint of line joining
$$A(-8, 3)$$
 and $B(2, -1)$.

x- Transform the equation
$$5x-12y+39=0$$
 into slope intercept form.

xi- Determine the value of P such that the lines
$$2x-3y-1=0$$
, $3x-y-5=0$ and $3x+Py+8=0$ meet at a point.

xii- Find the angle between the lines represented by
$$x^2 - xy - 6y^2 = 0$$

(Turn over)

6

5

5

5

5

5

5

5

4. Write short answers to any NINE questions:

- i- Define feasible region.
- ii- Graph the feasible region of inequality $3x+2y \ge 6$, $x \ge 0$, $y \ge 0$
- iii- Write an equation of circle with centre (5, -2) and radius 4.
- iv- Write down equation of tangent to $x^2 + y^2 = 25$ at (4, 3)
- v- Find the focus and vertex of parabola $y^2 = 8x$
- vi- Write equation of the ellipse whose foci (±3,0) and minor axis of length 10.
- vii- Find the foci and eccentricity of $\frac{x^2}{4} \frac{y^2}{9} = 1$
- viii- Find the length of tangent drawn from point (-5, 4) to the circle $x^2 + y^2 2x + 3y 26 = 0$
- ix- Find a unit vector in the same direction of the vector $\underline{\mathbf{v}} = [3, -4]$
- x- Write the direction cosine of vector $\underline{\mathbf{v}} = -\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$
- xi- Find a scalar ' α ' so that vectors $2\hat{i} + \alpha\hat{j} + 5\hat{k}$ and $3\hat{i} + \hat{j} + \alpha\hat{k}$ are perpendicular.
- xii- If $\underline{\mathbf{a}} = 4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\underline{\mathbf{b}} = 2\hat{\mathbf{i}} \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$, find $|\underline{\mathbf{a}} \times \underline{\mathbf{b}}|$
- xiii- A force $\underline{F} = 4\hat{i} 3k$ passes through A(2, -2, 5). Find its moment about B(1, -3, 1).

SECTION II

- 5- (a) Evaluate: $\lim_{\theta \to 0} \frac{1 \cos p\theta}{1 \cos q\theta}$
 - **(b)** Differentiate: Sec⁻¹ $\left(\frac{x^2+1}{x^2-1}\right)^{\frac{2}{3}}$ w.r.t "x"
- 6- (a) If $y = e^x \text{Sinx}$; show that $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 2y = 0$
 - **(b)** Evaluate: ∫Cosec³ x dx
- 7- (a) Evaluate: $\int_{0}^{\pi/4} \frac{\sin x 1}{\cos^2 x} dx$
 - (b) Graph the feasible region of the following system of linear inequalities and find the corner points $2x-3y \le 6$

$$2x + 3y \le 12$$

- $x \ge 0$, $y \ge 0$
- 8- (a) Find an equation of the circle passing through the points A(1, 2) and B(1, -2) and touching the line x + 2y + 5 = 0
 - (b) Use vectors, to prove that the diagonals of a parallelogram bisect each other.
- 9- (a) Find the equation of perpendicular bisector of a segment joining the points A(3, 5) 5 and B(9, 8).
 - (b) Find the equation of parabola with focus (-3, 1) and directrix x = 3.

314-1stA 424-24000