Roll	No

(To be filled in by the candidate)

(Academic Sessions 2020 - 2022 to 2022 - 2024)

MATHEMATICS

224-1st Annual-(INTER PART – II)

Time Allowed: 30 Minutes

Q.PAPER – II (Objective Type)

GROUP - I

Maximum Marks: 20

PAPER CODE = 8195

LHR-1-24

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling

two or more circles will result in zero mark in that question. If $f(x) = 3 - \sqrt{x}$ then f'(1) is equal to :

- (A) $-\frac{1}{2}$
- (C) $\frac{1}{2}$
- (D) 1

 $4\int \sin 2x \, dx = :$

- (C) $\frac{(\ln x)^2}{2} + c$ (D) $x(\ln x 1) + c$

Let $f(x) = \sqrt{1 - x^2}$ in R then domain of f is:

- (A) Real numbers
- (B) $|x| \le 1$
- (C) Negative real numbers
- (D) Integers

If $\int x e^{x^2} dx = k e^{x^2}$ then k = :

- (B) $\frac{1}{2}$
- (C) $\frac{x}{3}$
- (D) $\frac{x}{2}$

If f(x) has second derivative at c such that f'(c) = 0 and f''(c) < 0 then c is point of: 7

- (A) Maxima
- (B) Minima
- (C) Point of inflection
- (D) Origin

If $y = \cot x$, then $\frac{dy}{dx}$ is given by :

- (A) $\cos ec^2x$
- (B) $-\cos ec^2x$
- (C) $\tan x$
- (D) $-\cos ec x \cot x$

 $\int \frac{1}{x^2 + a^2} dx = :$

- (A) $\tan^{-1}\frac{x}{a} + c$ (B) $\frac{1}{a}\tan^{-1}\frac{x}{a} + c$ (C) $\frac{a}{x}\tan^{-1}\frac{x}{a} + c$ (D) $\frac{1}{a}\tan^{-1}\frac{a}{x} + c$

(Turn Over)

1-10	For $y = \log_e 5x$, $\frac{dy}{dx} = :$		
	(A) $\frac{1}{x}$ (B) 5 (C) $\frac{1}{5x}$ (D) 1		
11	The straight line $y = mx + c$ is tangent to the parabola $y^2 = 4ax$ if:		
	(A) $c = \frac{a}{m}$ (B) $c = \frac{m}{a}$ (C) $c = \frac{a^2}{m^2}$ (D) $c = am$		
12	y-coordinate of any point on x-axis is:		
	(A) 0 (B) x (C) 1 (D) y The volume of parallelepiped determined by $\underline{u} = \underline{i} + 2\underline{j} - \underline{k}$, $\underline{v} = \underline{i} - 2\underline{j} + 3\underline{k}$,		
13			
	$\underline{w} = \underline{i} - 7\underline{j} - 4\underline{k} \text{ is } :$		
	(A) 48 (B) 50 (C) 52 (D) 55		
14	The distance between the centres of the circles $x^2 + y^2 + 2x + 2y + 1 = 0$ and		
	$x^2 + y^2 - 4x - 6y - 3 = 0$ is:		
	(A) 1 (B) 4 (C) 5 (D) 15 If $\underline{a} + \underline{b} + \underline{c} = 0$ then which one is correct:		
15	If $\underline{a} + \underline{b} + \underline{c} = 0$ then which one is correct:		
	(A) $\underline{a} \times \underline{b} \times \underline{c} = 0$ (B) $\underline{a} \times \underline{b} = \underline{b} \times \underline{c} = \underline{c} \times \underline{a}$		
	(C) $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c} \cdot \underline{a}$ (D) $\underline{a} = \underline{b} = \underline{c}$		
16	(C) $\underline{a} \cdot \underline{b} = \underline{b} \cdot \underline{c} = \underline{c} \cdot \underline{a}$ (D) $\underline{a} = \underline{b} = \underline{c}$ The x-intercept of the line $2x + 3y - 1 = 0$ is :		
	(A) 2 (B) 3 (C) $\frac{1}{3}$ (D) $\frac{1}{2}$		
1.77	3		
17	The graph of $2x-3y \le 6$ is:		
	(A) On the origin side (B) Not on the origin side		
	(C) Not decided (D) Through the origin		
18	The area of the triangle having \underline{a} and \underline{b} as its two sides is given by :		
	(A) $ \underline{a} \cdot \underline{b} $ (B) $\frac{1}{2} \underline{a} \cdot \underline{b} $ (C) $ \underline{a} \times \underline{b} $ (D) $\frac{1}{2} \underline{a} \times \underline{b} $		
19	Homogeneous equation of second degree $ax^2 + 2hxy + by^2 = 0$ where a, b, h are		
	not all zero, represents two imaginary lines if:		
	(A) $h^2 = ab$ (B) $h^2 > ab$ (C) $h^2 < ab$ (D) $h = ab$		
20	(A) $h^2 = ab$ (B) $h^2 > ab$ (C) $h^2 < ab$ (D) $h = ab$ The eccentricity of the ellipse $\frac{x^2}{64} + \frac{y^2}{28} = 1$ is :		
	(A) $\frac{3}{4}$ (B) $\frac{4}{3}$ (C) $\sqrt{\frac{3}{4}}$ (D) $\sqrt{\frac{4}{3}}$		

.oll No	(To be filled in by the candidate)	
	(Academic Sessions 2020 – 2022 to 2022 – 2024)	
MATHEMAT		
PAPER – II (Essay Type)	
	. Bizerron	6
2. Write sho	ert answers to any Eight (6) questions.	
10.00	Prove that $\cos h^2 x - \sin h^2 x = 1$	
* *	If $f(x) = \sqrt{x+4}$ then find $f(x-1)$	
	Evaluate $\lim_{x \to 3} \frac{x-3}{\sqrt{x} - \sqrt{3}}$	
(iv)	Evaluate $\lim_{x\to 0} \frac{1-\cos 2x}{x^2}$	
(v)	Differentiate $y = (x^2 + 5)(x^3 + 7)$ with respect to x.	
(vi)	Differentiate $\frac{x^2+1}{x^2-3}$ with respect to x.	
(vii)	Find derivative of $(x^3+1)^9$ with respect to x.	
(viii)	Differentiate $\cos \sqrt{x} + \sqrt{\sin x}$ with respect to the variable involved.	
	Find derivative of $(x + 1)$ with respect to x . Differentiate $\cos \sqrt{x} + \sqrt{\sin x}$ with respect to the variable involved. $\frac{dy}{dx} = ?$ If $y = e^{x^2 + 1}$ Find Maclaurin Series for $\sin x$	
()	Find Maclaurin Series for sin x	
(xi)	Determine the interval in which $f(x) = 4 - x^2$, $x \in (-2,2)$ is increasing or decreasing.	
(xii)	Find $f'(x)$ if $f(x) = \sqrt{\ln(e^{2x} + e^{-2x})}$	
3. Write she	ort answers to any elemination questions.	6
(i)	Using differential to find $\frac{dy}{dx}$ if $xy + x = 4$ Evaluate $\int_{C} (a - 2x)^{\frac{3}{2}} dx$	
(ii)	Evaluate $\int (a-2x)^{\frac{3}{2}} dx$	
(iii)	Evaluate $\int \sec x dx$	
(iv)	Evaluate $\int x \ell nx dx$	
(v)	Evaluate $\int_{1}^{2} x \ln x dx$ Evaluate $\int_{1}^{2} \frac{x}{x^2 + 2} dx$	
(vi)	Find the area bounded by cos function from $x = -\frac{\pi}{2}$ to $x = \frac{\pi}{2}$	
(vii)	Solve the differential equation $\frac{dy}{dx} = \frac{y}{x^2}$	
(viii)	Find h such that $A(-1,h)$, $B(3,2)$ and $C(7,3)$ are collinear.	
(ix)	The coordinates of a point P are $(3, 2)$. The axes are translated through the point $O'(1,3)$. Find the coordinates of P referred to new axes.	
(x)	Find k so that the line joining A $(7,3)$; B $(k,-6)$ and the line joining C $(-4,5)$; D $(-6,4)$ are parallel.	
(xi)	Find the point of intersection of the lines $x-2y+1=0$ and $2x-y+2=0$	
	Find measure of the angle between the lines represented by $9x^2 + 24xy + 16y^2 = 0$	
(xii)	(Turn Over)	ı

4. Write short answers to any NINE (9) questions: 18 (i) Graph the solution set of inequality $3x-2y \ge 6$ (ii) Define feasible region. (iii) Find the equation of circle whose ends of diameter are (-3, 2) and (5, -6)(iv) Find the position of the point (5, 6) w.r.t the circle $2x^2 + 2y^2 + 12x - 8y + 1 = 0$ (v) Find the focus and vertex of parabola $v^2 = -8(x-3)$ (vi) Find the eccentricity of ellipse $x^2 + 4y^2 = 16$ (vii) Find the centre and eccentricity of the conic $\frac{y^2}{4} - x^2 = 1$ (viii) Identify the conic represented by $4x^2 - 4xy + y^2 - 6 = 0$ (ix) Find the work done by a constant force $\vec{F} = 2\hat{i} + 4\hat{j}$, if its point of application to a body moves it from A(1,1) to B(4,6)(x) Find the value of ' α ' such that $\alpha \underline{i} + \underline{j}$, $\underline{i} + \underline{j} + 3\underline{k}$ and $2\underline{i} + \underline{j} - 2\underline{k}$ are coplanar. (xi) If u = 2i - j + k and v = 4i + 2j - k find $u \times v$ (xii) Find a vector whose magnitude is 4 and is parallel to $2\underline{i} - 3\underline{j} + 6\underline{k}$ (xiii) If A(1,-1), B(2,0), C(-1,3) and D(-2,2) are given points, find the sum of the vectors AB and CD SECTION - II Note: Attempt any THREE questions. 5. (a) Find m and n, so that given function f is continuous at x = 3 $f(x) = \begin{cases} mx & \text{if } x < 3\\ n & \text{if } x = 3\\ -2x + 9 & \text{if } x > 3 \end{cases}$ 5 (b) Prove that $y \frac{dy}{dx} + x = 0$ if $x = \frac{1 - t^2}{1 + t^2}$, $y = \frac{2t}{1 + t^2}$ 5 6. (a) If $y = e^{-ax}$, then show that $\frac{d^3y}{dx^3} + a^3y = 0$ 5 (b) Evaluate the indefinite integral $\int \sqrt{x^2 - a^2} dx$ 7. (a) Solve the differential equation $2e^x \tan y \, dx + (1 - e^x) \sec^2 y \, dy = 0$ 5 (b) Maximize f(x,y) = x + 3y subject to the constraints $2x + 5y \le 30$; $5x + 4y \le 20$, $x \ge 0$, $y \ge 0$ 5 8. (a) Find equations of the tangents to the circle $x^2 + y^2 = 2$ perpendicular to the line 3x + 2y = 65 (b) Using vectors, prove that $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$ 5 9. (a) Find centre, foci, eccentricity, vertices and equation of directrices of $\frac{(y+2)^2}{9} - \frac{(x-2)^2}{16} = 1$ (b) Find the equations of altitudes of the triangle whose vertices are 5 A(-3,2), B(5,4), C(3,-8)

Roll No			(To be filled in by the	candidate)
Q.PAPE Note: F	EMATICS R – IL (Objective Type Four possible answers A, I	PAPER CODE PAPER CODE B, C and D to each quest that question with Mar	TINTER PART – II) Time 1 – II Maxi 2 = 8192	mum Marks: 20 ————————————————————————————————————
1-1	If $f(x) = \frac{1}{x^2}$ when w	which of the following	g is equal to $fof(x)$:	
	(A) x^4	(B) x^2	(C) 1	(D) $\frac{1}{x^4}$
2	What is the value of	$\lim_{x \to 0} (x \sin x) :$		
	(Α) α	(B) -1	(C) 1	(D) 0
3	What is the value of	$\sqrt{1-x^2}\frac{d}{dx}(\sin^{-1}x +$	$\cos^{-1}x$):	M
	$(A) \sqrt{1-x^2}$	(B) 0	(C) 2	(D) $\frac{1}{x}$
4	$\frac{d}{dx} \left(\sin h^{-1} x \right) = :$		30	
	$(A) \frac{1}{\sqrt{1-x^2}}$	$(B) \frac{-1}{\sqrt{1-x^2}}$	$(C) \frac{1}{\sqrt{1+x^2}}$	$(D) \frac{-1}{\sqrt{1+x^2}}$
5	Derivative of x^3 w.	x^3 is:		
	(A) 0	(B) 1	(C) x^3	(D) $3x^2$
6	If $f(x) = a^x$ then $f'(x) = a^x$	(x) = :		
	(A) $a^x \ell na$	(B) $a^x \ell nx$	(C) $a^x(\ell na)^2$	(D) $(a^x)^2 \ell na$
7	$\int x^{-1} dx :$			
	(A) 0	(B) $-x^{-2}+c$	(C) ∞	(D) $\ell nx + c$
8	$\int_{1}^{1} \frac{1}{\sqrt{1-x^2}} dx = :$			
	10 11 2			
	(A) $\frac{\pi}{6}$	(B) $\frac{\pi}{4}$	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{2}$
9	$\int \tan x dx = :$			
	(A) $ln \cot x + c$	(B) $ln \sec x + c$	(C) $\ell n \sin x + c$	(D) $ln\cos ec x + c$
L			3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(Turn Over)

1.10	$\int_{0}^{\pi} \sin x dx = :$			
	ő			
	(A) 0	(B) 1	(C) 2	(D) π
11	A linear equation in to	wo variables represents	•	
	(A) Circle	(B) Ellipse	(C) Hyperbola	(D) Straight line
12	Intercept form of equa	ation of line is:		
	$(A) \frac{x}{a} + \frac{y}{b} = 1$	(B) $\frac{x}{a} + \frac{y}{b} = 0$ $\frac{x}{a} + \frac{y}{b} = 0$ $\frac{x}{a} + \frac{y}{b} = 0$	(C) $\frac{x}{a} - \frac{y}{b} = 1$	(D) $\frac{x}{a} - \frac{y}{b} = 0$
13	Distance of point (co	$(s 3x, \sin 3x)$ from original	nis:	
	(A) 3	(B) 6	(C) 9	(D) 1
14	(0,0) is one of the se	olution of inequality:		
	(A) 3x + 5y > 4	(B) $2x + 3y < 4$	(C) $x + 3y > 5$	(D) $2x + 3y > 5$
15	Equation of circle with centre (3,0) and radius $\sqrt{9}$ is:			
	(A) $x^2 + y^2 - 6x = 0$	(B) $x^2 - 6x = 9$ (D) $9x^2 + y^2 = 9$	200.	
	(C) $x^2 + y^2 = 9$	(D) $9x^2 + y^2 = 9$		
16	Equation of directrix of	of parabola $y^2 = -12x$	is:	
			(C) $y = 3$	(D) $y = -3$
17	Co-vertices of ellipse	$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$; $a > b$ ar	e :	
	(A) $(\pm a, 0)$	(B) $(0,\pm a)$	(C) (0 + h)	(D) $(\pm h, 0)$
				(D) (±0,0)
18	Which of the following vectors is equal to the vector $\underline{i} \cdot \underline{j} \times \underline{k}$:			
				(D) <u>i</u>
19	For what value of P[2 P 5] is perpendicu	lar to [3 1 P]:	
	(A) $\frac{2}{3}$	(B) -1	(C) 1	(D) $\sqrt{5}$
20	If \underline{a} and \underline{b} are paralle	el vectors then $\underline{a} \times \underline{b} = :$		
	(A) 0	(B) 1	(C) -1	(D) 2

174-224-II-(Objective Type)- 8500 (8192)

Koll	No
TOIL	140

(To be filled in by the candidate)

(Academic Sessions 2020 – 2022 to 2022 – 2024)

MATHEMATICS

224-1st Annual-(INTER PART – II)

PAPER – II (Essay Type) GROUP - II Time Allowed: 2.30 hours Maximum Marks: 80

SECTION - I

1 HR-2-24

2. Write short answers to any EIGHT (8) questions:

(i) Given that $f(x) = \cos x$ find $\frac{f(a+h) - f(a)}{h}$ and simplify.

(ii) If
$$f(x)=(-x+9)^3$$
, find $f^{-1}(x)$

(iii) By rationalizing, find
$$\lim_{x\to 0} \frac{\sqrt{x+a} - \sqrt{a}}{x}$$

(iv) Write down the domain and range of
$$f(x)=2x-5$$

(v) Calculate derivative of
$$f(x) = x^{\frac{2}{3}}$$
 at $x = 8$

(vi) Find derivative of
$$\frac{1+x}{1-x}$$
 w.r.t. x

(vii) If
$$y = x^4 + 2x^2 + 2$$
, find $\frac{dy}{dx}$

(viii) Find
$$\frac{dy}{dx}$$
 of implicit function $x^2 - 4xy - 5y = 0$

(vii) If
$$y = x^3 + 2x^2 + 2$$
, find $\frac{dy}{dx}$
(viii) Find $\frac{dy}{dx}$ of implicit function $x^2 - 4xy - 5y = 0$
(ix) Apply chain rule to find $\frac{dy}{du}$ if $y = x^2 + \frac{1}{x^2}$ and $u = x - \frac{1}{x}$
(x) Differentiate $\sin^2 x$ w.r.t $\cos^4 x$
(xi) Find $f'(x)$ if $f(x) = x^3 e^{\frac{1}{x}}$

(x) Differentiate
$$\sin^2 x$$
 w.r.t $\cos^4 x$

(xi) Find
$$f'(x)$$
 if $f(x)=x^3 e^{\frac{1}{x}}$

(xii) Find
$$y_2$$
 if $y = x^2 \cdot e^{-x}$

3. Write short answers to any EIGHT (8) questions :

(i) Using differential to find $\frac{dx}{dy}$ of $x^4 + y^2 = xy^2$

(ii) Evaluate
$$\int (2x+3)^{\frac{1}{2}} dx$$

(iii) Evaluate
$$\int x\sqrt{x-a} \ dx$$

(iv) Evaluate
$$\int (\ell nx)^2 dx$$

(v) Evaluate
$$\int_{1}^{2} \left(x + \frac{1}{x} \right)^{\frac{1}{2}} \left(1 - \frac{1}{x^2} \right) dx$$

(vi) Find the area bounded by cos function from
$$x = -\frac{\pi}{2}$$
 to $x = \frac{\pi}{2}$

(vii) Solve
$$\frac{dy}{dx} + \frac{2xy}{2y+1} = x$$

(viii) Find the mid-points of the line joining the two points A(-8,3), B(2,-1).

(ix) Find h such that the points A (-1, h), B (3, 2) and C (7, 3) are collinear.

(x) In the triangle A (8,6), B (-4,2), C (-2,-6), find the slope of altitude of triangle.

(xi) Using slopes, show that the triangle with vertices A (6, 1), B (2, 7), C (-6, -7)is a right triangle.

(xii) Find the point of intersection of the lines x - 3y + 3 = 0 16

16

4. Write short answers to any NINE (9) questions :	18
(i) Define feasible region.	
(ii) *Graph the solution set of $5x - 4y \le 20$	
(iii) Write the standard and general equation of circle.	
(iv) Find centre and radius of $5x^2 + 5y^2 + 24x + 36y + 10 = 0$	
(v) Check the position of the point $(5,6)$ with respect to the circle $x^2 + y^2 = 81$ (vi) Find the length of the tangent drawn from the point $(-5,4)$ to the circle $5x^2 + 5y^2 - 10x + 15y - 131 = 0$	
(vii) Find foci and eccentricity of ellipse $x^2 + 4y^2 = 16$	
(viii) Find the points of intersection of $x^2 + y^2 = 8$ and $x^2 - y^2 = 1$	
(ix) If $\underline{u} = 2\underline{i} - 7\underline{j}$, $\underline{v} = \underline{i} - 6\underline{j}$ and $\underline{w} = -\underline{i} + \underline{j}$, find $\frac{1}{2}\underline{u} + \frac{1}{2}\underline{v} + \frac{1}{2}\underline{w}$	
(x) Find a vector whose magnitude is 4 and is parallel to $2\underline{i} - 3\underline{j} + 6\underline{k}$	
(xi) Find α so that the vector \underline{u} and \underline{v} are perpendicular; $\underline{u} = \alpha \underline{i} + 2\alpha \underline{j} - \underline{k}$ and	
$v = i + \alpha j + 3k$	
(xii) Find the area of parallelogram whose vertices are A $(1,2,-1)$; B $(4,2,-3)$ C $(6,-5,2)$; D $(9,-5,0)$	3);
(xiii) Prove that $\underline{u}.(\underline{v} \times \underline{w}) + \underline{v}.(\underline{w} \times \underline{u}) + \underline{w}.(\underline{u} \times \underline{v}) = 3\underline{u}.(\underline{v} \times \underline{w})$	
SECTION – II	
Note: Attempt any THREE questions.	
5. (a) Evaluate $\lim_{x\to 0} \frac{\sec x - \cos x}{x}$	5
5. (a) Evaluate $\lim_{x \to 0} \frac{\sec x - \cos x}{x}$ (b) Find the derivative w.r.t. $x \sin \sqrt{\frac{1+2x}{1+x}}$	5
6. (a) If $y = (\cos^{-1} x)^2$, prove that $(1 - x^2) y_2 - xy_1 - 2 = 0$	5
(b) Evaluate $\int \frac{2x}{1-\sin x} dx$	5
7. (a) Find the area between the x-axis and the curve $y = \sqrt{2ax - x^2}$ when $a > 0$	5
(b) Maximize $f(x,y)=2x+5y$ subject to the constraints	
$2y - x \le 8$; $x - y \le 4$, $x \ge 0$, $y \ge 0$	5
8. (a) Find equation of the circle passing through the points A (3, -1), B (0, 1) and having centre at $4x - 3y - 3 = 0$	5
(b) Use vectors to prove that $\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$	5
9. (a) Mid-points of sides of triangle are (1, -1), (-4, -3) and (-1, 1). Find coordinates of vertices of triangle.	5
(b) Show that equation of parabola with focus at $(a\cos\alpha, a\sin\alpha)$ and directrix	
$x\cos\alpha + y\sin\alpha + a = 0$ is $(x\sin\alpha - y\cos\alpha)^2 = 4a(x\cos\alpha + y\sin\alpha)$	5
174-224-II-(Essay Type)	-34000