HSSC-(P-II)- A-2024

Mathematics (Objective)

(For All Sessions) (GROUP-I)

Time: 30 Minutes

Marks: 20

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

Cirio.	TOT YOU CONTINUE CONTOUP CHICA								
1.1	Midpoint of $A(2,0)$, $B(0,2)$ is:	(A)	(0, 2)	(B)	(2,0)	(C)	(2, 2)	(D)	(1, l)
2.	The point satisfies $x + 2y < 6$	(A)	(4, 1)	(B)	(3, 1)	(C)	(1,3)	(D)	(1, 4)
3.	In a conic, the ratio of the distance from a fixed point to the distance from a fixed line is:	(A)	Focus	(B)	Vertex	(C)	Ecentricity	(D)	Centre
4.	Standard equation of Parabola is:	(A)	$y^2 = 4ax$	(B)	$x^2 + y^2 = a^2$	(C)	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	(D)	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$
5.	Equation of tangent to circle $x^2 + y^2 = a^2$ at $P(x_1, y_1)$ is:	(A)	$xx_1 + yy_1 = a^2$	(8)	$xx_1 - yy_1 = a^2$	(C)	$xy_1 + yx_1 = a^2$	(D)	$xy_1 - yx_1 = a^2$
6.	The volume of parallelopiped =	(A)	$(\underline{u} \times \underline{v}).\underline{\omega}$	(B)	$(\underline{u} \times \underline{v}) \times \underline{\omega}$	(C)	$\underline{u} \times (\underline{v} \times \underline{\omega})$	(D)	$\underline{u} \times (\underline{u} \times \underline{v})$
7.	The non-zero vectors are perpendicular when:	(A)	$\underline{u}.\underline{v}=1$	(B)	$ \underline{u},\underline{v} =1$	(C)	$\underline{u}.\underline{v}=0$	(D)	<u>u</u> . <u>v</u> ≠ 0
8.	<u>j</u> × <u>k</u> =	(A)	<u>i</u>	(B)	<u>-i</u>	(C)	0	(D)	<u>k</u>
9.	The range of $f(x) = 2 + \sqrt{x-1}$ is:	(A)	[1,+∞)	(B)	[2,+∞)	(C)	(1, +∞)	(D)	(2,+∞)
10.	The perimeter P of square as a function of its area A:	(A)	3√Ā	(B)	4√Ā	(C)	√A	(D)	2√Ā
11.	If $f(x) = \frac{1}{x^2}$ then $\hat{f}(3) = \underline{\hspace{1cm}}$.	(A)	$\frac{1}{9}$	(B)	$\frac{-2}{3}$	(C)	$\frac{-2}{27}$	(D)	$\frac{1}{27}$
12.	If $f(c) = 0 \& f''(c) > 0$ then C is point of:	(A)	Maxima	(B)	Minima	(C)	Inflection	(D)	Constant
13.	$\frac{d}{dx}(\log_a x) = \underline{\hspace{1cm}}.$	(A)	$\frac{1}{x lna}$	(B)	$\frac{lna}{x}$	(C) :•	$\frac{1}{x}$,	(D)	$\frac{-1}{xlna}$
14.	$\frac{d}{dx}(\cot ax) = \underline{\qquad}.$	(A)	cosec ² ax	(B)	a cosec²ax	(C)	−a cosec²ax	(D)	-a cosec ax
15.	$\int \frac{1}{\sqrt{1-x^2}} dx = \underline{\qquad}.$	(A)	$Sin^{-1}x + c$	(B)	$Cos^{-1}x + c$	(C)	$-Sin^{-1}x + c$	(D)	$-Cos^{-1}x + c$
16.	$\int \frac{1}{x} dx = \underline{\qquad}.$	(A)	lnx + c	(8)	$\frac{1}{x^2} + c$	(C)	$-\frac{1}{x^2}+c$	(D)	$\frac{1}{x} + c$
17.	The solution of differential equation $\frac{dy}{dx} = -y \text{ is:}$	(A)	$y = xe^{-x}$	(B)	$y = ce^{-x}$	(C)	$y = e^x$	(D)	$y = ce^x$
18.	$\int_{0}^{1} \frac{1}{1+x^2} dx = \underline{\qquad}.$	(A)	$\frac{\pi}{4}$	(B)	$\frac{2\pi}{3}$	(C)	$\frac{3\pi}{4}$	(D)	π
19,	x – intercept of the line $2x + 5y - 1 = 0$ is:	(A)	2	(B)	3	· (C)	$\frac{1}{2}$	(D)	<u>1</u> 5
20.	Slope of $y - axis$ is:	(A)	0	(B)	1	(C)	-1	(D)	Undefined

Roll No

to be filled in by the candidate

HSSC-(P-II)-A/2024 (For All Sessions) (GROUP-I)

Time: 2:30 hours

RWP1-24

SECTION-I

Mathematics (Subjective)

2. Write short answers of any eight parts from the following:

(8x2=16)

i. If
$$f(x) = 2x + 1$$
, then find $f \circ f(x)$.

ii. Express the area A of a circle as a function of its circumference C.

iii. Evaluate
$$\lim_{h\to 0} \frac{\sqrt{x+h}-\sqrt{x}}{h}$$

iv. Define continuous function.

v. Differentiate
$$\left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 w. r. t x$$

vi. Find $\frac{dy}{dx}$ if $y^2 - xy - x^2 + 4 = 0$

vii. Differentiate
$$x^2 sec4xw.r.tx$$

viii. Differentiate sin2xw.r.t. cos4x

ix. Find
$$f(x)$$
 if $f(x) = e^x(1 + lnx)$

x. Find y_2 if $y = ln(x^2 - 9)$

xi. Prove that
$$ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots$$

xii. Determine the interval in which f(x) = cosx is decreasing; $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

3. Write short answers of any eight parts from the following:

(8x2=16)

i. Solve the differential equation $sec^2 x tan y dx + sec^2 y tan x dy = 0$

ii. Find the area between x - axis and the curve $y = x^2 + 1$ from x = 1 to x = 2

iii. Evaluate:
$$\int_{0}^{\varepsilon} x \ln x \, dx$$

iv. Evaluate the integral $\int \frac{-2x}{\sqrt{4-x^2}} dx$

v. Evaluate:
$$\int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 dx$$

vi. Evaluate the integral $\int (a + 2x)^{3/2} dx$

vii. Find the approximate change in the volume of a cube if length of its each edge changes from 5 to 5.02.

viii. Show that the points A(0, 2), $B(\sqrt{3}, -1)$ and C(0, -2) are vertices of a right triangle.

ix. Convert the equation of line 4x + 7y - 2 = 0 into normal form.

X. Fine the angle from the line with slope $\frac{-7}{3}$ to the line with slope $\frac{5}{2}$.

xi. Find the pair of lines represented by $3x^2 + 7xy + 2y^2 = 0$.

xii. Find the point of intersection of lines 3x + y + 12 = 0 and x + 2y - 1 = 0.

4. Write short answers of any nine parts from the following:

(9x2=18)

i. Define feasible region.

ii. Graph the solution set of in-equality $3x + 7y \ge 21$.

iii. Find equation of circle with ends of diameter at (-3, 2) and (5, -6).

iv. Write down equation of tangent to the circle $x^2 + y^2 = 25$ at $(5 \cos\theta, 5 \sin\theta)$

v. Find focus and vertex of Parabola $x^2 = 4(y - 1)$ vi. Find equation of ellipse with data Foci (± 3 , 0) Minor axis of length 10.

vii. Find center of hyperbola $x^2 - y^2 + 8x - 2y - 10 = 0$

- viii. Find equation of Normal to $y^2 = 4ax$ at $(at^2, 2at)$.
- ix. Find the sum of vector \overrightarrow{AB} and \overrightarrow{CD} given four points A(1,-1)B(2,0)C(-1,3) and D(-2,2)
- x. Find \propto , so that $|\propto \underline{i} + (\propto +1)j + 2\underline{k}|=3$
- xii. If \underline{v} is a vector for which \underline{v} . $\underline{i} = 0\underline{v}$. $j = 0\underline{v}$. $\underline{k} = 0$, find \underline{v}
- xii. Find the area of triangle determined by the points P(0,0,0) Q(2,3,2) and R(-1,1,4)
- xiii. Find the value of $2\hat{\imath} \times 2\hat{\jmath}$. \hat{k}

SECTION-II

Note Attempt any three questions. Each question carries equal marks:

(10x3=30)

(05)

(05)

- 5. (a) Find the values of m and n, so that given function f is continuous at x = 3 when
- $f(x) = \begin{cases} mx, & if \ x < 3 \\ n, & if \ x = 3 \\ -2x + 9, & if \ x > 3 \end{cases}$
- (b) Find $\frac{dy}{dx}$, when $x = \frac{a(1-t^2)}{1+t^2}$, $y = \frac{2bt}{1+t^2}$ (05)
- 6. (a) If $y = (\cos^{-1}x)^2$, prove that $(1-x^2)y_2 xy_1 2 = 0$.
 - (b) Evaluate the integral $\int e^x \sin x \cos x \, dx$. (05)
- 7. (a) Solve the differential equation $y x \frac{dy}{dx} = 3\left(1 + x \frac{dy}{dx}\right)$. (05)
 - (b) Graph the feasible region and corner points of the inequalities (05)

$$2x + y \le 10$$
; $x + 4y \le 12$; $x + 2y \le 10$;

- 8. (a) Show that the circles: $x^2 + y^2 + 2x 8 = 0$; $x^2 + y^2 6x + 6y 46 = 0$ touch internally. (05)
 - (b) Using vector method, for any triangle ABC, prove that: $c^2 = a^2 + b^2 2ab \cos C$. (05)
- 9. (a) Find the focus, vertex and directrix of the Parabola; $x^2 = 4(y 1)$ (05)
 - (b) Find the lines represented by $3x^2 + 7xy + 2y^2 = 0$ and also find measure of the angle between them. (05) 618-12-A

HSSC-(P-II)- A-2024 (For All Sessions)

Mathematics (Objective)

(GROUP-II)

Time: 30 Minutes

Marks: 20

points 32

(D)

16

Makas	Write Answers to the Questions on the objective answer sheet provided. Four possible answers	A, B, C	and D to ea	ach que	estion are given	. Which answer
Note:	write Answers to the Questions of the objective answer sheet provided. For purpose, insider correct, fill the corresponding circle A, B, C or D given in front of each question with Market	er or Per	n ink on the	answe	er sheet provide	d
you co	nsider correct, till the corresponding circle A, B, C or D given in horizon cach queened with				(5)	D-tat stude

1.1	If $r=0$, the circle is called:	(A)	Unit circle	(8)	Circle	(C)	Ellipse	(D)	Point circle
2.	[i i k]=	(A)	<u>i</u>	(B)	- <u>i</u>	(C)	1	(D)	0
3.	If $\underline{u} = 2\underline{i} - \underline{j} + \underline{k}$, $\underline{v} = 4\underline{i} + 2\underline{j} - \underline{k}$ then $u \times \underline{u} =$	(A)	u²	(B)	0	(C)	1	(D)	2
4.	If \underline{u} , \underline{v} are two non-zero vectors, then area of parallelogram =	(A) •	$ \underline{u} \times \underline{v} $	(B)	$\frac{1}{2} \underline{u}\times\underline{v} $	(C)	$\frac{1}{6} \underline{u}\times\underline{v} $	(D)	$\frac{1}{2}(\underline{u}\times\underline{v})$
5.	If k is any real number, $\lim_{x \to a} [kf(x)] =$	(A)	$\lim_{x\to a} f(x)$	(B)	$\lim_{x\to a} k$	(C)	$k\lim_{x\to a}f(x)$	(D)	f(x)
6.	If $(fx) = x + 3$ then: $\lim_{x \to \overline{3}} f(x) =$	(A) °	6	(B)	0	(C)	-3	(D)	3
7.	If $y = e^{f(x)}$ then $\frac{dy}{dx} =$	(A)	$e^{f(x)}$	(B)	$f(x)e^{f(x)}$	(C)	$f(x)e^{f(x)}$	(D)*-	$f(x)e^{f(x)}$
8.	Derivative of $x\sqrt{x^2+3} w.r.tx$ is:	(A) *	$\frac{2x^2+3}{\sqrt{x^2+3}}$	(B)	$\frac{3x}{2\sqrt{x^2+3}}$	(C)	$\frac{3x^2+3}{x\sqrt{x^2+3}}$	(D)	$\frac{3x^2+3}{2x\sqrt{x^2+3}}$
9	Derivative of $tanh(x^2)$ is:	(A) °	2x sech ² x	(B)	2 sech ² x ²	(C)	2x sech ² x ²	(D)	sech ² x ²
10.	Derivative of "x" w.r.t "x" is:	(A)	x ²	(B)	2	(C)	0	(B)	1
11.	In integration, substitution of $\sqrt{4-x^2}$ is:	(A)	$x = sin\theta$	(B)	$x = 2 \sin\theta$	(C)	$x = \sin 2\theta$	(D)	$x = 2 \cos\theta$
12.	$\int Tan x dx =$	(A)	ln cos x + c	(B)	$\frac{1}{\ln \cos x} + c$	(O)a	$-ln \cos x +c$	(D)	$Sec^2x + c$

Solution of differential equation: $(e^x + e^{-x})\frac{dy}{dx} = e^x - e^{-x}$ is:

19.

The line intersect the circle at:

Diameter of circle: $x^2 + y^2 = 16$ is:

	(A) $-in(e^{-i}+e^{-i})+c$		in (e j.c.) i i		(4)				2
14.	$\int SinxCos \ x \ dx =$	(A)	$\frac{Sin^2x}{2} + c$	(B)	$\frac{\cos^2 x}{2} + c$	(C)	-Sin x + c	(D)	Cosx + c
15.	The line: $ay + b = 0$ is	(A)	Parallel to y-axis	(B)	Parallel to x-axis	(C)	Passing through origin	(D)	Lies in Quad. I
16.	The slope of line joining the points $(-2,4)$; $(5,11)$ is:	(A)*	1	(B)	-1	(C)	45°	(D)	-45°
17.	The location of the plane of the point $P(x, y)$ for which $y = 0$ at:	(A)	Origin	(B)	y – axis	(C)=	x - axis	(D)	Ist Quad
18.	The maximum and minimum values occur at:	(A)	Corner point	(B)	Any point	(C)	Convex region	(D)	Corner points of feasible region
19.	The line intersect the circle at:	(A)	One point	(B)	Two points	(C)	Infinite points	(D)	More than two points

619-12-A

(B)

8

(C)

Mathematics (Subjective)

(For All Sessions)

Time: 2:30 hours

(GROUP-II)

SECTION-I

RWP-2-24

Write short answers of any eight parts from the following: 2.

(8x2=16)

- Define even function with example.
- Find fog(x) if f(x) = 2x + 1, $g(x) = \frac{3}{x-1}$, $x \ne 1$.

 $\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x - 2}.$ Evaluate: iii.

- Prove that Sinh2x = 2 Sinhx Coshx.
- Find $\frac{dy}{dx}$ from first principles if $y = \frac{1}{\sqrt{x+a}}$
- Differentiate w. r. t x; $\frac{(x^2+1)^2}{x^2-1}$.
- vii. Find $\frac{dy}{dx}$ if $x^2 4xy 5y = 0$.
- Differentiate w.r.t θ ; $tan^3\theta sec^2\theta$.
- ix. Find f(x) if $f(x) = x^3 e^{1/x}$.

- Find y_2 if $y = 2x^5 3x^4 + 4x^3 + x 2$.
- xi. Apply Maclaurin Series expansion to prove that:
- Find extreme values for $f(x) = 3x^2$.
- $\cos x = 1 \frac{x^2}{2!} + \frac{x^4}{4!} \frac{x^6}{6!} + \cdots$

Write short answers of any eight parts from the following:

(8x2=16)

i. Evaluate $\int x\sqrt{x^2-1} dx$

Use differentials to approximate the value of (31) \$\frac{1}{5}\$

Evaluate: $\int \frac{x}{\sqrt{4+x^2}} dx$ iii.

iv. Evaluate the integral $\int \frac{e^{m \tan^{-1} x}}{1+x^2} dx$

 $\int_{0}^{\infty} \frac{x}{x^2 + 2} dx$

- Find the area between x axis and the curve $y = 4x x^2$
- Solve the differential equation $\frac{1}{x}\frac{dy}{dx} = \frac{1}{2}(1+y^2)$ vii.
- The points A(-5, -2) and B(5, -4) are ends of a diameter of a circle. Find the centre and radius of circle. viii.
- The coordinates of a point p are (-6, 9). The axes are translated through the point O(-3, 2). Find the coordinates İΧ. of p referred to the new axes.
- Check whether the origin and the point p(5, -8) lies on the same side or on the opposite sides of the line 3x + 7y + 15 = 0Х.
- By means of slopes, show that the following points lie on the same line (-4,6); (3,8); (10,10). Xi.
- Determine the value of p such that the lines 2x 3y 1 = 0, 3x y 5 = 0 and 3x + py + 8 = 0 meet at a point. ΧÏ.

Write short answers of any nine parts from the following: 4.

(9x2=18)

- Graph the solution set of $3y 4 \le 0$ in xy plane. i.
- ii. Define convex region.
- Find an equation of circle of radius a and lying in the second quadrant tangent to both the axes. iii.
- Find center and radius of circle $5x^2 + 5y^2 + 24x + 36y + 10 = 0$. İ٧.
- Write down equation of normal to the circle $x^2 + y^2 = 25$ at (4, 3). ٧.
- Find vertex and directrix of the parabola $y^2 = -12x$. vi.
- Find the point of intersection of conics $x^2 + y^2 = 8$ and $x^2 y^2 = 1$. vii.
- Find center and foci of hyperbola $\frac{y^2}{4} x^2 = 1$. viii.
- ix. Find a vector of magnitude 4 and is parallel to $2\underline{i} 3\underline{j} + 6\underline{k}$.
- Find direction cosines of \overrightarrow{PQ} where P=(2,1,5) and Q=(1,3,1). Χ.
- Find volume of parallelopiped whose edges are $\underline{u} = \underline{i} 2\underline{j} + 3\underline{k}, \underline{v} = 2\underline{i} \underline{j} \underline{k}$ and $\underline{w} = \underline{j} + \underline{k}$ xi.
- Find the value of $\begin{bmatrix} \underline{k} & \underline{i} & j \end{bmatrix}$. XII.
- xiii. Find \propto so that $\underline{u} = \propto \underline{i} + 2 \propto \underline{j} \underline{k}$ and $\underline{v} = \underline{i} + \propto \underline{j} + 3\underline{k}$ are perpendicular.

60.com

Note Attempt any three questions. Each question carries equal marks:

(10x3=30)

- 5. (a) Evaluate: $\lim_{\theta \to o} \frac{tan\theta sin\theta}{sin^3\theta}$
- (b) Differentiate $cos\sqrt{x}$ from the first principle. (5+5)
- 6. (a) Show that $y = \frac{mx}{x}$ has maximum value at x = e
- (b) Evaluate: $\int x^3 \cos x \, dx$ (5+5)
- 7. (a) $\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \frac{\cos x \, dx}{\sin x \, (2 + \sin x)} \, dx$
- (b) Minimize z = 2x + y subject to constraints $x + y \ge 3$ $7x + 5y \le 35$ $x \ge 0$ $y \ge 0$ (5+5)
- 8. (a) Find the coordinates of the points of intersection of the line x + 2y = 6 with the circle: $x^2 + y^2 2x 2y 39 = 0$ (5)
 - (b) If $\underline{a} = 4\underline{i} + 3\underline{j} + \underline{k}$ and $\underline{b} = 2\underline{i} \underline{j} + 2\underline{k}$. Find a unit vector perpendicular to both \underline{a} and \underline{b} . Also find the sine of the angle between them.
- 9. (a) Find the focus, vertex and directrix of the Parabola $x + 8 y^2 + 2y = 0$ (5)
 - (b) Find coordinates of the circumcenter of the triangle whose vertices are A(-2,3), B(-4,1) and C(3,5). (5)

www.taleen

\$1