Q	~=		DUVCICC		A:	TK	-12-79		Ball No.	
Answ	er Shee		PHYSICS PART - II		019/1 (ОВЈ	ne car	TVE PART)	Г	Roll No.	
		-					(ppp)	<u></u>		
			(11	AIC	RMEDIATE)	}	~~~/			
ion D	y. Supd	nt	Fictit	ione	Roll No. (For Office	IIse)	-		Sign. Candidate	
			J. ICAL		dule-AA-Q-Q-a-t					
	SICS T <i>-</i> II)	•	1	INT	019/1 ERMEDIATE)		м	orke	: 17	
		ze n		1141	(***)		20040	me	: 20 Minutes	
	ECTIV			a nr		1 0 . e1	73.7			
Note:- Write your Roll No. in space provided. Over writing, cutting, using of lead pencil will result in loss of marks. All questions are to be attempted.										
- 1	Each o	uest	ion has four po	ssil	ole answers, Tick	11) the correct a	nsv	ver. (17)	
[1	A sei	miconductor will	beh	ave as an insulator	at to	emperature;			
İ	1	A	20 k	В	10 k	C	5 k	a	0 k	
Ì	2	The	value of potential	bai	rrier for Ge at room	n ter	nperature is;			
ł		A		в	0.6 V	c	0.5 V	D	0.3 V	
ŀ	3				n half-wave rectifie	r cir	cuit are;			
ı		A		В	3	C	2	D	1	
	4	The	SI unit of Stefen'	s co	nstant is;			- 1		
		A	WILL I	В	$Wm^{-2}K^4$	C	$Wm^{-2}K^{-4}$	D	Wm^2K^4	
	5				a beam of infrare		diation of wavele	ngth D	124nm is; 1 eV	
- 1	6	A		B	3 eV emove completely s	C	2 eV	V		
1	0	5554V	Ionization	- 1	Excitation			D	Potential energy	
		A	energy	В	energy	C	Kinetic energy	<u></u>	Totelluar chergy	
	7	The	dead time of the	Gei	ger-Muller Counte	r is;		1		
		A	~10 ⁻⁷ s	В	~10 ⁻⁶ s	C	~10 ⁻⁵ s	D	~10 ⁻⁴ s	
	8	The	surface temperat	ture						
		A	9000 °C	В	8000 °C	C	7000 °C	D	6000 °C	
	9	Elec	tric flux does not	de				, ,		
		A	Medium	В	Shape of closed surface	C	Charge enclosed	D	Medium and charge enclosed	
		TOTAL	tule field intensit	w di	ie to an infinite she	et of			van g	
	10	Liec	tric neid intensit	yat	le to an infinite she	1		П		
		A	$E=\frac{2\sigma}{2\sigma}$	В	$E = 2\sigma\varepsilon_{\alpha}$	C	$E = \frac{\sigma}{2\varepsilon_o}$	a	$E = \frac{\varepsilon_o}{2\sigma}$	
			ε,						26	
	11	Hea	t dissipated acros	ss th	ie conductor is give	n by			- 17-m	
		A	IV	В	I²Rt	C	I ² Vt	D	V ² Rt	
	12	For	mula for e/m of a	n el	ectron is;					
		1.1	2v	_	2v	c	V	D	<u>v</u>	
		A	Br	В	$\overline{B^2r^2}$		B^2r^2		Br	
	13	In l	amp scale arrang	eme	ent, the distance be	twee	n scale and galva	non	eter is;	
		A	3 m	В	2 m	C	1 m	D	0.5 m	
	14		mula for energy	den	sity in case of indu	ctor	is;			
	- <u>-</u> -	A	B^2	В		C		D	В	
		_	() () () () () () () () () ()	-	$\frac{\mu_o}{2B^2}$		$\frac{B}{2\mu_o}$	Ī	$\frac{B}{2\mu_o^2}$	
			$2\mu_o$			Ļ		<u> </u>		
	15									
		A	A.C. generator	B	D.C. generator	C	D.C. motor	D	Transformer	
	16	Root mean square value of alternating voltage is;								
		A		В		C		D	$\frac{3V_o^2}{\sqrt{2}}$	
			$\frac{V_o^2}{\sqrt{2}}$		$\frac{V_o}{\sqrt{2}}$		$\frac{V_o^2}{2}$		$\sqrt{2}$	
	45	+		f +1	ne condition for res	onar	ice is			
	17			В		C		D	X _L >Z	
	a la	A	$X_L=X_C$	D	ALAC	1~			L	

X_L>X_C
(The End)

 $X_L=X_C$

PHYSICS

019/1

AJK-12-19

PAPER : PART-II

INTERMEDIATE

MARKS: 68

TIME : 2:40 Hours

(SUBJECTIVE PART)

Note:- Attempt any TWENTY TWO (22) short questions in all selecting eight from Q. 2 and

Q. 3 each and six from Q. 4.

 $(22 \times 2 = 44)$

SECTION	_ T
OLCLION	_

2	Write short answers of any eight ques	tion	$\frac{1}{8}$ (2 x 8 = 16)		
1	Electric lines of force never cross. Why?	2	Suppose that you follow on electric field line due to a positive point charge. Do electric field and the potential increase or decrease?		
3	Describe the working of inkjet printer briefly.	4	Define electric potential and one volt.		
5	How can you use a magnetic field to separate isotopes of chemical element?	6	How can a current loop be used to determine the presence of a magnetic filed in a given region of space?		
7	Define the sensitivity of galvanometer. How can a galvanometer be made more sensitive.	8	What is the Lorentz force? Write its equation,		
9	Define mutual inductance. Write its formula.	10	Why self induced emf is also called as back emf?		
11	Show that ε and $\frac{\Delta\phi}{\Delta t}$ have the same units.	12	A suspended magnet is oscillating freely in horizontal plane. The oscillations are strongly damped when a metal plate is placed under the magnet. Explain why this occurs.		
3-	Write short answers of any eight ques	tion			
1	A Potential difference is applied across the ends of a copper wire. What is the effect on the drift velocity of free electrons by i. Increasing the potential difference ii. Decreasing the length and the temperature of the wire.	2	What is Wheatstone bridge? How it can be used to determine an unknown resistance?		
3	What is thermistor? Give an example of thermistor.	4	A sinusoidal current has rms value of 10A. What is the maximum or peak value?		
5	Explain the conditions under which electromagnetic waves are produced from a source?	6	Define reactance of a capacitor. Also write down its formula.		
7	Distinguish between crystalline and polymeric solids.	8	Define modulus of elasticity. Show that the units of modulus of elasticity and stress are the same.		
9	Define yield point and ultimate tensile stress.	10	The anode of a diode is 0.2V positive with respect to its cathode. Is it forward biased?		
11	What is the principle of virtual ground?	12	What is rectification? What are its types?		
<u> -</u>	Write short answers of any six question	ns.	$(2 \times 6 = 12)$		
1	As a solid is heated and begins to glow. Why does it first appear red?	2	Which has the lower energy quanta? Radio waves or x-rays. Explain		
3	Define pair production and write its equation.	4	Is energy conserved when an atom emits a photon of light?		
5	Define meta stable state and population inversion.		What factors make a fusion reaction difficult to achieve.		
7	A particle which produces more ionization is less penetrating.	8	Write the names of basic forces of nature.		
9	Define Nuclear fission and write its reaction.				

SECTION - H

Vo	te:-	Attempt any three questions. $(8 \times 3 =$	24)	
5	a	Derive the expression for energy density stored in the electric field of the capacitor.	tor. (05)	
	b	How many electrons pass through an electric bulb in one minute if the 300 mA current is passing through it?	(03)	
6	a	Derive and explain the relation for force on a current carring conductor in uniform magnetic field.		
	b	A pair of adjacent coils has a mutual inductance of 0.75 H. if the current in the primary coil changes from 0 to 10 A in 0.025s. What is the average induced emf in the secondary coil?	(03)	
7	a	Discuss the A.C. through a R-C series circuit?	(05)	
	b	In a certain circuit, the transistor has a collector current of 10 mA and a base current of 40 μ A. What is the current gain of the transistor?	(03)	
8	а	Describe the formation of energy bands in solids. Explain the difference amongst electrical behavior of Conductors, Insulators and Semi-Conductors in terms of energy band theory.	(05)	
	b	What is the de-Broglie wavelength of an electron whose kinetic energy is 120 eV?	(03)	
9	а	Write down the postulates of Bohr's Model of the hydrogen atom and prove that Bohr's radii are quantized.		
	b	The half life of S_r is 9.70 hours. Find its decay constant.	(03)	

(The End)