Roll No.

(To be filled in by the candidate)

Physics

H.S.S.C (12th)-A-2022

Time :

: 20 Minutes

Paper: II

Group: I

Objective - (iv)

Marks : 17

Px-III Paper Cod

Paper Code 8 4 7

P SWL-41-22

Note: - You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number in your answer book. Use marker or pen to fill the circles. Cutting or filling up two or more circles will result no mark.

SECTION-A

	SECTION-A												
Q.1	Questions	Α	В	С	D								
1.	Power factor in resistive circuit when A.C is passing will be:	Zero	1	$\frac{1}{\sqrt{2}}$	10,								
2.	Power dissipation in pure inductor circuit over the cycle is:	VI	$VI\cos\theta$	$\frac{V^2}{R}$	Xero								
3.	The number of different crystal systems based on the geometrical arrangement of their atoms is:	5	7	A	9								
4.	A photo diode can turn its current ON and OFF in:	Nano second	Milli second	Seconds	100 second								
5.	Current gain of transistor is of the order of:	Decimal	Hundreds	Thousands	10								
6.	Energy of a photon is independent of:	Intensity of light	Frequency of hight	Wavelength of light	Velocity of light in a medium								
7.	Photoelectric effect is explained by considering light as:	Electromagnetic wayes	Corpuscles	Wave front having energy	Simple waves								
8.	Energy of electron in the infinite orbit of hydrogen atom is:	175-54	–13.2 eV	3.4 eV	Zero								
9.	Size of quark is of the order of:	bess than $10^{-15} m$	Less than $10^{-10} m$	Less than $10^{-9} m$	Less than $10^{-18}m$								
10.	It is very difficult to dispose of radioactive waste due to:	Long half life	High energy	Uncontrolled chain reaction	Fast chemical reaction								
11.	Efficiency of practical transformer is less than ideal one due to:	Eddy current	High current	Low current	Low voltage								
12.	VSA ⁻¹ is called:	Joule	Watt	Henry	Newton								
13.	A one coulomb charge of mass one gram is in electric field of $1NC^{-1}$, acceleration will be	$100ms^{-2}$	$1000 ms^{-2}$	1 ms ⁻² .	10 ms ⁻²								
14.	Magnetic flux through area $5m^2\hat{k}$ due to magnetic field $3\hat{i} + 2\hat{j}$ tesla is:	15 Wb	10 Wb	30 Wb	Zero								
15.	A wire of length <i>l</i> and resistance <i>R</i> is cut into three equal pieces and twisted. Equivalent resistance will be:	R	$\frac{R}{3}$	<u>R</u> 9	<u>R</u> 4								
16.	Shape of Gaussian surface should be:	Closed	Spherical	Circular	Box type								
17.	Toner is given:	Positive charge	Negative charge	Conventional current	No charge								

	•		Roll No	0			(To be filled	in by the candid	ate)
	Physics		H.S.S.	C (12 th)-A	-2022		Time	: 2:40 Hours	•
N	Paper : II	Group:		Subjective	SwL	- 41-2	Marks	: 68	
Not	e: Section	B is compulsor	y. Attempt any 3 qu	uestions fro	m Sectio	n C.			
2.	Write short	t answers to any		TION-B		-10			
2. i.		-	ch electric flux depend	7	$(8 \times 2 =$	= 16)			
ii.			at $1eV = 1.6 \times 10^{-19} J$.						
iii.	increase or de	ecrease?	ectric field line due to			ge. Do ele	ectric field and	d the potential	
iv. v.			gion of high potential motion with a magne		tial?				
vi.	How can you	use a magnetic fi	eld to separate isotope	s of chemical	element?				
vii.	region is zero	?	straight line through	some region	of space,	can you sa	ay that magne	etic field in that	
viii. ix.		nain parts of CRO	? Explain with examp	1_2					
X.			tion? Give its unit.	ies.					
xi.	If someone ac	cidently swallows	s an α -source and β	-source which	h would	be more da	angerous to hi	m? Explain why	<i>y</i> ?
xii.			e ionization is less pen	etrating. Why					
3.		answers to any			$(8 \times 2 =$	16)			
i. ii.	How can you	use a rheostat as	ntional current end ele a variable resistor in a	ctronic curren	it.				
iii.	Why does the	resistance of a co	nductor rise with temp	perature?	27				
iv. v.		eter reads 250V. V ation with its type	What is its peak value?	*					
vi.	How many tin	nes per second wi	ll an incandescent lam	p reach maxi	mum brill	iance whe	n connected to	o a 50Hz source	?
vii. viii.	Define Curie	Temperature. Wha	at is curie temperature ms and acceptor atom	for iron?					
ix.	Define the terr	ms (a) Elastic							
x. xi.	Define Logic (Gates. silicon diodes do	not emit light?						
xii.			is very small. Why?	2					
4.		answers to any			x 2 = 12				
i.	Does the induc	ced emf in a circu	it depend on the resis	stance of the	circuit? D	oes the in	duced current	depend on the	
ii.	resistance of the Does the induction		t to decrease the magr	etic flux thro	ugh a circ	mit?			
iii.	Write two met	hods for determin	g the induced emf in a	loop.					
iv. v.	State Faraday's What happens	s law of electroma	ngnetic induction and from a black body if it	write its math	ematically	y expression	on.		
vi.	Why do not we	e observe a Comp	ton effect with visible	light?	uperature	is doubled	17		
vii. viii.			special theory of rela and spontaneous emis						
ix.	What is meant	by line spectrum?	Explain how line spe	sion. ctrum can be	used for i	dentificati	on of element	·s?	
				TION-C					
			(Each question car	ries Eight (8) Mark	<u>s)</u>			
			w it can be used to find						5
	energy acquired	d by it in electron	, ,						3
6. (a)	Describe how cl	harge to mass $\binom{e}{m}$	ratio of an electron ca	n be determin	ed by pro	jecting it p	erpendicular t	o a magnetic fiel	ld. 5
(b)	Two coils are p $200As^{-1}$ in the	laced side by side other coil. What	e. An emf of 0.8V is of is the mutual inductan	oserved in once of the coils	e coil whe	en the curr	ent is changin	g at the rate of	3
7. (a)	Describe the A.	.C through a R-C	series circuit.						5
						40 kΩ			
(b)	Calculate gain of	of non-investing a	mplifier as shown in g	given figure.	J 10 kg	PV _i			3
8. (a)	Define Compto	n Effect. Find the	expression for Compt	on shift. Drav	w its scatt	ering diag	ram and label	it.	5
			ected to a load of 2500						3
9. (a)	What is nuclear	fission? Explain	fission chain reaction	in detail.					5
(b)	The wavelength from which this	of K X-ray from transition results	copper is 1.377×10 ⁻ ?	¹⁰ m . What is	the energ	y differen	ce between the	e two levels	3
							307	; 7-422-A-11900	

Roll No.

(To be filled in by the candidate)

Physics

H.S.S.C (12th)-A-2022

Time : 20 Minutes

Paper: II

Group: II

Objective - (iv)

Marks : 17

Px-IIM

Paper Code 8 4 7 8

SWL-92-22

Note: - You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill that circle in front of that question number in your answer book. Use marker or pen to fill the circles. Cutting or filling up two or more circles will result no mark.

C	E	CI	0	N	-A
	_		_		

		PEC HON-Y	1	r	
Q.1	Questions	Α	В	С	D
1.	Photons emitted in inner shell transition are:	Continuous X-rays	Discontinuous X-rays	Characteristics X-rays	Energetic X-lays
2.	The value of Wien's constant is:	$2.9\times10^{-3}mk$	2.9×10^3 mk	$2.9\times10^{-5}mk$	2.9×10° mk
3.	Platinum wire becomes yellow at a temperature of:	900°C	500°C	1166°C	1300°C
4.	A device which used for the conversion of A.C into D.C is called:	An oscillator	Detector	Anamplifier	Rectifier
5.	The value of potential barrier for Silicon at room temperature is:	0.3 V	0.7	0.5 V	0.9 V
6.	The S.I unit of stress is same as that of:	Force	Pressure	Momentum	Work
7.	The mean value of A.C is:		0	I_0	$\frac{I_0}{\sqrt{2}}$
8.	At high frequency the value of reactance of a capacitor in A.C circuit will be:	Small	Zero	Large	Infinite
9.	Energy density in inductor is given by:	$\frac{1}{2}\frac{B}{\mu_o}$	$\frac{1}{2} \frac{B}{\mu_{\sigma^2}}$	$\frac{1}{2}\frac{B^2}{\mu_{o^2}}$	$\frac{1}{2}\frac{B^2}{\mu_o}$
10.	The application of mutual induction is a:	D.C motor	Radio	Television	Transformer
11.	Torque is produced in a current carrying coil when it is placed in a.	Electric field	Magnetic field	Gravitational field	Nuclear field
12.	Which on has least resistance?	Galvanometer	Ammeter	Voltmeter	Ohmmeter
13.	When a charge of $5\mu C$ passes through a conductor in 2 sec. the current in conductor is:	10A	2.5A	2.5 mA	2.5μΑ
14.		$E = \frac{\delta}{2\varepsilon_0}$	$E = \frac{\delta}{\varepsilon_0}$	$E = \frac{2\delta}{\varepsilon_0}$	$E = \frac{1}{2\delta \varepsilon_0}$
15.	Which one is photoconductor?	Copper	Selenium	Mercury	Aluminium
16.	Half life of Uranium –239 is:	26.5 minutes	24.5 minutes	25.5 minutes	23.5 minutes
17.	The binding energy per nucleon is maximum for:	Helium	Iron	Polonium	Radium

								ı	Roll No	•				\perp			(To	be fi	illed	in b	y the	can	didate
P	hysic	S						H	I.S.S.C	(12	2 th)-/	4-2 ()22				7	Time)	: 2	:40	Hou	rs
	aper				roup					ubje	ctive	50	w	4	9:	2-	21	<u>/</u> ark		: 6			
Not	e:	Sectio	n B is	s con	apuls	ory.	Atte	mpt	any 3 q	uesti	ons f	rom	Sec	tio	n C.								 -
2.	XX7-	ita ah a	4		4	1	G. 1.		SEC	TIO	N-												
2. i.		ite sho at is the										((8 x	2 =	16)								
ii.	Pro	ve that e	electri	c inte	nsity	and p	ootent	ial gr	adient ha	ıs sam	e uni	t.											
iii.	Do	electron	s tend	l to go	o to re	egion	of his	gh po	tential or	of lo	w pot	tentia	1?										
iv.	Ele	etric line	s of f	orce i	never	cross	3. Why	y?															
v. vi.	Pro	v ullecti	MA^{-1}	magr m ⁻¹ —	W/hm	rieia i	s dete	rmın	ed in a c answer.	urrent	carry	ing l	ong	wir	e?								
vii.	Wh	y the res	istanc	e of	an am	ı . J	r shou	your ıld be	answer. e very love	w?													
viii.	Is it	possible	e to or	rient a	a curr	ent lo	op in	a uni	form ma	gnetic	field	such	n tha	t th	e loor	n wil	ll no	t ten	d to	rots	ate?		
ix.	AA 11	cii radia	tuon c	iose v	voula	aepo	osit mo	ore in	the bod	v (a)	0mG	v to	hand	or	(h) 11	mGw	to i	entire	e bo	dy?	110:		
x. xi.	AA 119	ii do yo	u una	erstan	ia by	Dack	ground	a raa	iation? V	rite t	WO SC	urce	s of t	thes	e rad	liatio	n.						
xii.	Diff	erentiate	e betw	een t	herm	al and	i fast	react	and botto	m qua	irk co	mbir	natio	n ba	aryon	i?							
3.	Wr	ite shor	rt ans	wers	s to a	ny E	light	part	s.			(8 x 2	2 =	16)								
i.	A po	otential	differ	ence	is apj	plied	acros	s the	ends of	а сор	per w	ire '	W/hat	t 137	ill ha	effe	ect o	n the	e dr	ift v	zeloc	itv o	f free
ii.	CICC	TOILS UY	(a) III	Cicas	mg p	Offill	iai (O)	decr	easing th	e leng	th an	d the	tem	per	ature	of th	ne w	rire?		'	0.00	11, 0	1 1100
iii.	Diff	erentiate	betw	een t	e or a he ter	mina	luctor	rise v	with tem and emf	peratu	re?	s of a	200		-1	. 4 . 1							
iv.	HOW	does do	oublin	g the	frequ	iency	affec	t the	reactance	of (a) an i	nduc	tor (l	ano b) a	capa	ea cı ıcitor	ırcuı r?	t.					
V.	Wha	t is mea	nt by	A.M	and F	·.M?						*			F								
vi. vii.	Expl	iusoidai ain, wh	curre the l	nt na:	s peai	to its	le of l	.4.14. nal ci	A. what ze when	will b	e its	rms v	alue	?									
/iii.	Diffe	erentiate	betw	een s	teel a	nd so	ft iron	on t	he basis	of hys	teres	is loo	orare	ea.									
ix.	Disti	nguish l	betwee	en cry	ystalli	ine, aı	morph	ious a	and poly	neric	solid	s.	Pur	ou.									
x. xi.	Why	t is the r	iet cha	arge c	n n-t	ype o	rap-1	type s	substanc	?									•				
xii.	Wha	are sen	sors?	Expl	a u a	ow Li	ght D	epen	dent Res	stanc	e (LF)R) u	orke	. 96	canco	or of	`1:~L	. 4					
١.	Wri	te shor	t ans	wers	to aı	ny Si	x par	ts.			· (LL	(6 x				лог	ngı	It.					
i.	On w	hat fact	ors the	e self	-indu	ctanc	e of a	coil	depends:	•		(_	,									
ii. iii.	What	is the p	rincip	le of	an el	ectric	gener	rator	?														
iv.	How	would y	ou pc	sition	ierge	at loon	a uran o of w	ision	mer. Wh	at step	s sho	ould y	ou to	ake	to de	term	nine	the t	urns	s rat	io?		_
v.	WILY	do not v	46 008	serve	Com	pton i	Effect	with	Visible I	ight?	ugno	110 110	ora se	o u	at the	71 E 18	s no	emi	inau	ıcea	i in th	ne lo	op?
vi.	Can p	air prod	luction	1 take	plac	e in v	'acuur	n? Ex	xplain.														
vii. iii.		uncertai X-rays o				livin	o tissi	1e?															
ix.	How	can the	spectr	um o	f Hyd	lroger	n cont	ain s	o many l	ines w	hen]	Hvdr	ogen	COI	ntains	s onl	v or	ne ele	octro	nn?			
								<u> </u>	SECT	101	I-C	,	- 6			, 0111,	<i>y</i> 01.	10 010	,cu c)11 :			
						Œa	ach q	uest	ion carı	ies E	ight	(8) N	Mar	ks)									
(a)	Find t	he charg	ge on	an ele	ctron	ı by N	1illika	an's r	nethod.														5
(b)	A rect	angular	bar o	f iron	is 2c	m by	2cm	in cro	oss-sectio	n and	40cr	n lon	g. Ca	alcı	ılate i	its re	sista	ance	if th	ie re	eietis	vito	3
	of iroi	ıs II×	10 2	2m																		vity	3
(a)	Derive	the exp	oressi	on for	force	e on r	novin	g ele	ctric cha	rge in	a uni	form	mag	gnet	ic fie	ld. A	Also	dete	rmir	ne it	ts		_
,	un con	OH.							rotates in														5
- 3	CIIII									u11110	ım m	agne	uc fi	eld	of m	agni	tude	0.05	ъΤ. І	lf th	e pea	ak	3
i	is 12V	. What	is the	angu	lar ve	locit	y of th	ie coi	i1?														
(a) 1	How p	ower is	calcu	lated	in A.	C circ	cuit? I	Draw	circuit d	iagra	n for	RLC	seri	es r	esona	ating	g circ	cuit.	Disc	cuss	the		5
(b) ¹	The cu	rrent flo	ywina Wina	into f	he ha	∪ and	a tron	write	down it	s prop	ertie	S.	la=4			7 -	.,						
+	he rat	io I_c/I_c	:++	he ***	lua a	f	u u ail	31310	r is 100 μ	w.a	ma It	s coll	ecto	r cu	rrent	I_c , i	ts ei	nitte	r cui	rren	I_{E}	and	3
									determi														5
D) /	Assum	ing you	radia	te as	does a	a blac	k bod	y at	your bod	y tem	oerati	are 37	7°C.	At	what	wav	vele	ngth	do y	ou /	emit	the	3
1.	nosi e	nergy?																					
		s the nu																					5
b) (Compu	ite the si	nortes	t wav	eleng	gth rac	diatio	n in t	he Balm	er seri	es. W	hat v	alue	of	n mu	st be	use	d?					3
																							-