Paper Code Number: 4473		INTERMEDIA	2023 (1 st -A) TE PART-II (Roll No:	,		
PHYSICS PAPER-II				, , , , , , , , , , , , , , , , , , , ,			
14/1/2-1-25							
				OBJECTIVE MAXIMUM MARKS			
Q.No.1 You have four choices for each objective type question as A, B, C and D. The choice which you this correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question.							
S.#	QUE	STIONS	A	В	C	D	
. 1	Root mean square an alternating volt		$\frac{V_o^2}{\sqrt{2}}$	$\frac{V_o}{\sqrt{2}}$	$\frac{V_o^2}{2}$	V _o	
					2	2	
2		in a pure inductor is:	Zero	Infinite	Small	Maximum	
3	The value of poter silicon at room ter	nperature is:	0.3 <i>V</i>	0.5V	0.71	0.91/	
4	The ratio of impur an intrinsic semico	onductor is:	1 to 10 ³	To to	1 to 10 ⁵	1 to 10 ⁶	
5		gain of transistor is:	Coulomb	Ampere	Notanit	Farad	
6	When platinum wi appears cherry red	at temperature:	500°C	900° C	1100°C	1300° C	
7	A photocell is base		Photoelectric effect	Polandzajújus	Time dilation	Compton effect	
8	Normally an electron can reside in excited state for about:		16.3	10 ⁻⁴ s	SHORE	10 ⁻⁸ s	
9	Dead time of the counter is:		$\sim 10^{-7} s$	10 ⁻⁶ s	$\sim 10^{-4} s$	$\sim 10^{-5} s$	
10	The building place alled		Quarks	Elections	Protons	Ions	
11	The construction of an electrical distribution of the construction		Henry	Faraday	Watt	Oersted	
12	Electric field intensity due to an infinite sheet of charge is:		$E = \frac{2\sigma}{\varepsilon_o}$	$E = 2\sigma\varepsilon_o$	$E = \frac{\sigma}{2\varepsilon_o}$	$E = \frac{\sigma}{\varepsilon_o}$	
13	The value of drift v is of the order of:	velocity of electrons	$10^3 ms^{-1}$	$10^2 ms^{-1}$	$10^{-3} ms^{-1}$	$10^{-2} ms^{-1}$	
14	Formula for shunt i	resistance R_S is:	$R_S = \frac{I_g}{I - I_g} R_g$	$R_{S} = \frac{V_{g}}{I - I_{g}} R_{g}$	$R_S = \frac{I - I_g}{I_g} R_g$	$R_{S} = \frac{I - I_{g}}{I_{g} R_{g}}$	
15	Voltmeter is connecircuit in:		Perpendicular	Parallel	Series	Anti parallel	
16	The principle of an base on:		Mutual Induction	Lenz's law	Self induction	Faraday's law of electromagnetic induction	
17	When the motor is emf always:	just started, back	Becomes zero	Decreases	Remains same	Increases	

INTERMEDIATE PART-II (12 th Class)			2023 (1 st -A)		Roll No:		
PHY	SICS PAPER-II GROUP-I	•					
	E ALLOWED: 2.40 Hours		UBJECTI		MAXIMUM MARKS: 68		
NOT	E: Write same question number and	its parts	number on	answer b	ook, as given in the question pa	per.	
	· · · · · · · · · · · · · · · · · · ·	SEC	CTION-I	MTN	-12-1-23		
	ttempt any eight parts.		T 2000 1 22 22		8 × 2	= 16	
(i)	State Gauss's law.				unction of ECG?	· · · · · · · · · · · · · · · · · · ·	
(iii)	Do electrons tend to go to region of h						
(iv)	Draw q – t curve for charging process Define tesla and write relation between			e define ca	ipacitive time constant.		
(vi)	Why a voltmeter is always connected	· · · · · · · · · · · · · · · · · · ·		£9			
(vii)					constant		
(111)	If the length of the solenoid is doubled by keeping number of turns constant for steady current then what should be the new value of the magnetic field?						
(viii)	If a charged particle moves in a straig						
	can you say that magnetic field in tha	t region					
(ix)	Name the six quarks.				unction of dosimeter?		
(xi)	What are isotopes? What do they have						
(xii)	Discuss the advantages and disadvant	ages of	fission pow	er from the	e point of safety,		
2 1	pollution and resources.				0.442	16	
	tempt any eight parts.	Lucaiata	and Frantsi		8 × 2 =	= 1e	
(i) (ii)	Do bends in a wire affect its electrical Describe a circuit which will give a co						
(iii)	What is a series resistance circuit? He						
(iv)	A sinusoidal current has rins value of						
(v)	How the reception of a particular radi						
(vi)	What is power factor of a pure (a) r				e circuit?		
(vii)	What is meant by strain energy? How						
(viii)	How would you justify that Young's I						
(ix)	How existing view of magnetism forb	ids pres	ence of an i	solated ma	agnetic pole?		
(x)	Why ordinary silicon diodes do not er						
(xi)	Draw circuit diagram of half wave rec				for sinusoidal input.		
(xii)	Define open loop voltage gain of an o			•	9		
4 44	What is its value for a typical operation	nal amp	olifier?		(1/2	10	
	tempt any six parts.	and the r	nagnatia fia	ld magaina	6 × 2 = 1	12	
(i)	Is it possible to change both the area a the loop and still not have an induced			iu passing	uirougii		
(ii)	Can a step-up transformer increase the						
(iii)	Why self induced emf is also called as						
(iv)	A beam of red light and a beam of biu			the same	energy.		
, ,	Which bean contains the greater numb						
(v)	Why don't we observe a Compton effe			t?			
(vi)	Describe the dual nature of energy and	l matter					
(vii)	Which has the lower energy quanta?			ys?			
(viii)	Why Neon is mixed with Helium in N						
(ix)	What do we mean when we say that the				-		
SECTION-II							
NOTE		II-I	ulata asusas	ton and he	3 × 8 =		
5.(a)	Derive the relation for capacitance of	•	***************************************			5	
(b)	A platinum wire has resistance of 100						
(()	Find the value of temperature co-effic					5	
6.(a)	Drive an expression of force on a mov					3	
(b)	A Square coil side 16cm has 200 turns If the peak emf is 12V. What is angul			norm mag	mene neid of magnitude 0.051.	2	
7.(a)	What is rectification? Draw diagram			of full w	ave rectifier	3	
(b)	Find the value of the current and induce	ctive res	ctance when	n A.C. vol	tage of 220V at 50Hz is passed		
	through an inductor of 10H.			,	Salar Passoci	3	
8.(a)	What is photoelectric effect? How its	differer	nt results we	re success	fully explained by Einstein?	5	
(b)	A 1.0m long copper wire is subjected						
	Calculate the tensile strain and the per	cent elo	ngation whi	ch the wir	e undergoes.	3	
9.(a)	What is mass defect and binding energ		w the graph	between	binding energy per nucleus and		
	nucleus number. Also explain this cur	rve.				5	
(b)	Electrons in an X-ray tube are accelera						
ļ	are slow down in a target, what will b	e the m	inimum wav	elength of	X-rays produced?	3	

19-2023(1st-A)-25000 (MULTAN)

Paper Code		2023 (1 st -A)						
Number: 4478		INTERMEDIATE	Roll No:					
PHYSICS PAPER		ER-II GROUP-	GROUP-II MIN-		2-2-33			
TI	ME ALLOWED		OBJECTI			ADVC. 17		
	Q.No.1 You have four choices for each objective type question as A, B, C and D. The choice which you think							
is correct, fill that bubble in front of that question number, on bubble sheet. Use marker or pen to fill the bubbles. Cutting or filling two or more bubbles will result in zero mark in that question.								
S.#	fill the bubbles	s. Cutting or filling two or UESTIONS	more bubbles w	_				
1		en voltage along Y – axis	X – plates	Y – plates	Cathode of	Anodes of		
	on C.R.O, connec		of C.R.O.	of C.R.O.	C.R.O.	C.R.O.		
2	If we want to incre	ease the measuring range						
	value should be:	eries high resistance	Increased	Decreased	Kept	Zero		
	varae siloata se.				constant			
3		nduced current in a circuit	Ohm's law	Faraday's	Gauss's law	Lenz's law		
	is determined by:			law				
4	F14			100				
4	inductor behaves l	rent in a circuit, the	Thermistor	Resistor	Capacitor	Rectifier		
	inductor behaves i	IRC.		144				
5	Metal detectors co	nsist of:	R-C	R-L	RLC series	L – C circuit		
			circuit	circuit	circuit			
	A 4 1.1.1. C	Dr.C. : : :			2.20.0			
6	shows the behavio	, RLC series circuit	R – L circuit	Pure		Pure		
	Shows the behavio	ui as.	K - L circuit	inductive circuit	R –C circuit	capacitive circuit		
				Visit 1		Circuit		
7	High temperature	super conductors have a	11 52K	77K	125K	163K		
	critical temperature	e greater than:						
8	In On own occ oo		17 17					
O	then at the output	mparator, when $V > V_{\perp}$	$V_o = + V_{CC}$	$V_a = 0$	$V_o = -V_{CC}$	$V_o = \infty$		
	then at the output	we get.						
9	The SI unit of curr	ent gain are	Ampere	Ohm	Gray	No unit		
		(4.500 pt 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				Tro dinit		
10	Which photon of I	Red	Yellow	Blue	Green			
11	The rest mass of pl	antha ic	0.1.10=3.1	1 67 10-27 1	7	Y ~ .		
11	The rest mass of p	15.	$9.1 \times 10^{-3} kg$	$1.67 \times 10^{-27} kg$	Zero	Infinity		
12	X – rays are:		High energy	High energy	High energy	High energy		
	-		electrons	neutrons	protons	photons		
10	TT							
13	Heat produced due	to fission reaction core of Nuclear reactor	500° C	900°C	1100°C	1300°C		
	is about:	core of Nuclear reactor						
14		1. 1. 1. 1.						
14	Subatomic particles	s are divided into:	Six groups	Five groups	Four groups	Three groups		
15	If a positive charge	d particle of mass "m"		αĒ		$ec{E}$		
		l to uniform electric	Zero	$\frac{qE}{r}$	$qmec{E}$			
		eration of the particle is:		m	qmE	qm		
10								
16	A $3K\Omega$ resistor is	connected in series with		_				
	constant for capacit	citance 2mF. The time	1 sec	5 sec	6 sec	1.33 sec		
	constant for capacit	W1 10,						
17	If no fourth band is	present on a carbon	± 20%	±10%	±5%	0%		
	resistor then its tole	erance will taken:						
}								

(12)

INTERMEDIATE PART-II (12th Class) 2023 (1st-A) Roll No: PHYSICS PAPER-II **GROUP-II** TIME ALLOWED: 2.40 Hours **SUBJECTIVE MAXIMUM MARKS: 68** NOTE: Write same question number and its parts number on answer book, as given in the question paper. **SECTION-I** MTN-12-2-23 Attempt any eight parts. $8 \times 2 = 16$ Suppose that you follow an electric field line due to a positive point charge. (\cdot) Do electric field increase or decrease? If a point charge q of mass m is released in a non-uniform field with field lines (i) pointing in the same direction, will it make a rectilinear motion? Show that ohms times farad is equivalent to second. What is a test charge? Write its any two characteristics. (IV) How can you use a magnetic field to separate isotopes of chemical element? Why the resistance of an ammeter should be very low? (vii) Define Lorentz force. Write role of each component of this force. A proton enters this page from left to right while magnetic field is out of the page. Prove that it will be deflected towards bottom of page. What factors make fusion reaction difficult to achieve? (π) What is a radioactive tracer? Describe one application in medicine. (xii) Define nuclear activity. Write its SI unit. What are leptons? Name at least two leptons. 3. Attempt any eight parts. $8 \times 2 = 16$ Is the filament resistance lower or higher in a 500W, 220V light bulb than in a 100W, 220V bulb? (li) How the bridge circuit is used to determine an unknown resistance? iii) Why heat is produced in a conductor due to flow of electric current? (iv) Describe amplitude modulation with diagram. Describe the condition which will make the reactance of capacitor small. Describe two advantages of a 3phase A.C. supply. Differentiate between crystalline and amorphous solids. Draw stress-strain curves for ductile and brittle materials. How can the conductivity of a semi-conductor be raised? The anode of a diode is 0.2 volts positive with respect to its cathode. Is it forward biased? What is the biasing requirement of the junctions of a transistor for its normal operations? What is importance of use of a semi-conductor in electronic circuits? Explain. $6 \times 2 = 12$ Attempt any six parts. How can the spectrum of hydrogen contain so many lines, when hydrogen contain one electron? (ii) Will bright light eject more electrons from a metal surface than dimmer light of same colour? Why don't we observe Compton effect with visible light? (iii) Can an electric motor be used to drive an electric generator with the output from (iv) generator being used to operate the motor? In a certain region the earth's magnetic field point vertically downward. (V) When a plane flies due north, which wingtip is positively charged? (vi) What is the importance of minus sign in the expression? $\varepsilon = -$ What is threshold frequency in photoelectric effect? What do you mean by annihilation of matter? (ix) Write down two postulates of Bohr's theory **SECTION-II** NOTE: Attempt any three questions. $3 \times 8 = 24$ What is Wheatstone bridge? Explain and prove the principle of Wheatstone bridge. 5 Determine the electric field at the position $\vec{r} = (4i + 3j)m$ caused by a point charge $q = 5.0 \times 10^{-6} C$ placed at origin. 3 What is transformer? Derive its equation and discuss power losses in the transformer. 3.(H) 5 The resistance of a galvanometer is 50 ohm and reads full scale deflection with a current of 2.0 mA. (1) Show by a diagram how to convert this galvanometer into voltmeter reading 200V full scale. What is an operational amplifier? Describe the use of operational amplifier as non-inverting O.P. amplifier and find its gain. (b) A 10mH, 20Ω coil is connected across 240V and 180/ $_{\pi}$ Hz source. How much power does it dissipate? 3 ?..(a)_ Derive an expression for strain energy in deformed material. 5 What is the de Broglie wavelength of an electron whose kinetic energy is 120 eV. 3 7.(a) Write postulates of Bohr's Model. Prove that radii and energy of electron is quantized in hydrogen atom. 5 Find the mass defect and binding energy for tritium. If the atomic mass of tritium is 3.016049 U, (b) Mass of neutron = 1.008665U, Mass of proton = 1.007276 U, Mass of electron = 0.00055 U 3