***	Roll No.	

HSSC-(P-II)-A-2024 (For All Sessions)

Paper Code 8 4 7 7

Physics (Objective)

(GROUP-I)

Time: 20 Minutes

Marks: 17

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

1.1	One h	One henry is equal to: RWP-1-Y								
	(A)	$V S^{-1} A^{-1}$	(B)	VSA^{-1}	(C)	$VS^{-1}A$	(D)	$V^{-1}SA$		
2.	When	motor is overloaded,	the magn	nitude of back emf is:						
	(A)	Constant	(B)	Increases	(C)	,Decreases	(0) Infinite		
3.	In capa	acitor circuit phase b	etween cu	rrent and charge is:						
	(A)	Parallel	(B)	In phase	(C)	Anti parallel	(D)	Out of phase		
4.	At reso	nance frequency the	e impeden	ce of RLC series circu	uit is:\					
	(A)	Minimum	(B)	Maximum	(c)	Both (A) and (B)	(D)	Infinite		
5.	Which I	has least hysteresis	loop area	?	~ \	· Area	The state of the s			
	(A)	Soft iron	- (B)	Steel	< (c) \	Wrought iron	(D)	Cobalt		
6.	During negative half cycle of A.C. , $p-n$ junction has:									
	(A)	Low resistance	(B)	No resistance	(C)	High resistance	(D)	Remain same		
7.	Device which converts low voltage or current to high voltage or current is:									
	(A)	Rectifier	(B)	Transformer	(C)	Inductor	(D)	Amplifier		
8.	The mo	mentum of photon is	represen	ted by the equation:			6			
	(A)	p = mv	(B)	$p=\frac{h}{\lambda}$	(C)	$p = \frac{\lambda}{h}$	(D)	$p = h\lambda$		
9.	The end	ergy needed by phot	on to crea	te electron-positron pa	ir is:	~3				
	(Á)	1.02 MeV	(B)	0.52 MeV)(c)	0.051 MeV	(D)	1.51 MeV		
10.	Bremss	trauhlung radiations	are exam	ple of	20	A				
	(A)	Molecular spectra	(B)	Atomic spectra	(C)	Continuous spectra	(D)	Discrete spectra		
11.	1 rem is	equal to:	·							
	(A)	0.1 SV	`(B)	0.01 SV	(C)	2.04 SV	(D)	3.06 SV		
12.	Radiothe	erapy is generally do	one with γ	rays emitted from:						
	(A)	lodine-131	(B)	Strontium-90	(C)	Sodium-24	(D)	Cobalt-60		
13.	Charge on the Droplet can be calculated by:									
	(A)	$q = \frac{mg}{vd}$	(B)	$q = \frac{v}{mgd}$	(C)	$q = \frac{mgd}{v}$	(D)	$q = \frac{d}{mgd}$		
14.	If the distance between two charges is halved, Force becomes:									
	(A)	One fourth	(B)	Four times	(C)	Half	(D)	Double		
15.	The mini	The minimum power is delivered to across the resistor R , when:								
	(A)	$r = \infty$	(B)	r = 0	(C)	r = R	(D)	$r = R/_4$		
6.	A positive charge is moving away from observer. Direction of magnetic induction will be:									
	(A)	Anticlockwise	(B)	Towards right	(C)	Towards left	(D)	Clockwise		
7.	Shunt resistance is:									
	(A)	Low resistance	(B)	High resistance	(C)	Zero resistance	(D)	Impedence		
				625	-12-A		.)			

Re	HSSC-(P-II)- A-2024	
	11431C3 (Subjective)	Marks : 68
	CECTION	e: 2:40 hours
2	Write short answers of any eight parts from the following:	/0.5
	i. Define electric polarization and electric dipole. ii. Sketch the graphs for charging and discharging of	(8x2=16)
	The potential is constant throughout a given region of space. Is the electric field zero or non-zero in this region?	a capacitor.
	v. How can you identify that which plate of a capacitor is positively charged?	Explain
	v. Can an electron at rest be set in motion with a magnet? Explain.	
١	How does the graph pattern appear stationary on the screen of CRO? Explain the condition.	
٧	What should be the orientation of a current carrying coil in a magnetic field so that torque acting upon the coil is (a) maximum	/h)!-! 0
vi	What information is represented by the voltmeter should have a very high resistance? ix. What factors make a fusion reaction difficult to	(D) minimum?
;	What information is revealed by the length and shape of the tracks of an incident particle in Wilson cloud ch	o acnieve?
Х	i. What is meant by dose of radiation? What is its S.I. unit? xii. Why Geiger counter is not suitable for fast	iamber?
3.	Write short answers of any eight parts from the following:	
İ	Why does the resistance of a conductor rise with temperature? ii. What is meant by A.M. and F.M.?	(8x⊋≕16)
iii	Describe a circuit which will give a continuously varying potential.	
iv	Why potentiometer is a better instrument than a voltmeter to measure potential difference? Explain briefly:	
٧	In an R.L circuit, will the current lag or lead the voltage? Illustrate your answer by a vector diagram.	
Vİ	When a 100v are applied to an A.C. circuit, the current flowing in it is 100mA. Find its impedance.	
VII.	what is meant by para, dia and ferromagnetic substance? Give examples for each	
viii.	Define curie temperature. Also write the value of curie temperature for iron.	
ix.	Differentiate between elasticity and plasticity of a material, x. Why ordinary silicon diodes do not on	nit liaht?
Χİ.	Evaluate the gain of a non-inverting amplifier for external resistances R ₂ = 5KO and R ₂ = 20KO	m ngm:
xii.	Draw characteristic curves for the forward biased and reverse biased $p + n$ junction diode	
4.	Write short answers of any six parts from the following:	(6x2=12)
i.	Show that ε and $\frac{\Delta \phi}{\Delta t}$ have the same units. ii. Write any four applications of photocell.	(CAZ-12)
iii.	Can a D.C. motor be turned into a D.C. generator? What changes are required to be done?	
iv.	What is the main difference between A.C. generator and D.C. generator in its construction?	
٧.	What are the measurements on which two observers in relative motion will always agree upon?	
۷i.	Will bright light eject more electrons from a metal surface than dimmer light of the same colour?	
/ii.	Is it possible to create a single photon in annihilation of matter? Explain briefly.	
ii.	Can the electron in the ground state of hydrogen absorb a photon of energy 13.6 eV and greater than 13.6 eV	. * /
X.	Differentiate between excited state and metastable state. Also write the residing times for each state.	? <i>V</i>
	SECTION-II	
te	Attempt any three questions. Each question carries equal marks:	/0004\
a)	Derive the relation for energy stored in a capacitor. Calculate the energy density.	(8x3=24)
b)	A platinum wire has a resistance of 100 at 0°C and 200 at 273°C. Find the value of taxable of taxab	(5)
-)	research of plantair.	(3)
a)	What is alternating current generator? Find the value of instantaneous induced current by it.	(5)
) .)	A power line 10 m high carries a current 200A. Find the magnetic field of the wire at the ground?	/2)
	Derive an expression for resonance frequency in R-L-C series circuit. Also write down the properties of the seriesonance.	es ₍₅₎
)	The current flowing into the base of a transistor is $100\mu A$. find its collector current I_c , its emitter current I_E and	(3)
	the ratio $^{I_c}/_{I_E}$, if the value of current gain eta is 100:	(0)
	Explain "Energy Band Theory" of solids. How does it help to distinguish between conductors, insulators & semi conductors?	/r·
١	What is the maximum wavelength of two photons produced when a positron applicators an electron? The rest	(5)
ſ	mass energy of each is 0.51 MeV.	(3)

What are inner shell transition? Also discuss the production of x-rays.

(5)

(3)

8.

Physics (Objective) (GROUP-II) Time: 20 Minutes Marks: Wile Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given, V answer you consider correct. Bit the corresponding circle A, B, C or D given in tront of each question with Marker or Pen ink on the answer sheet provided. 1.1 The rest mass of photon is: (A) $2 \operatorname{cor} (B) = 1.67 \times 10^{-27} kg$ (C) $1.67 \times 10^{-21} kg$ (D) $9.1 \times 10^{-21} kg$ 2. X-rays are also known as: (A) Cathode rays (B) Positive rays (C) r -rays (D) Alpha rays 3. The atomic number of $\frac{1.41}{1.6} Ba Is$: (A) 1.41 (B) $\frac{1}{1.66} \times 10^{-20} kg$ (C) $\frac{1.66 \times 10^{-21} kg}{1.66 \times 10^{-21} kg}$ (D) $\frac{92}{1.66 \times 10^{-28} kg}$ (A) $\frac{1.66 \times 10^{-19} kg}{1.66 \times 10^{-29} kg}$ (B) $\frac{1.66 \times 10^{-29} kg}{1.66 \times 10^{-29} kg}$ (C) $\frac{1.66 \times 10^{-31} kg}{1.69 \times 10^{-31} kg}$ (D) $\frac{1.66 \times 10^{-28} kg}{1.66 \times 10^{-29} kg}$ (D) $\frac{1.66 \times 10^{-29} kg}{1.66 \times 10^{-29} kg}}$ (D) $\frac{1.66 \times 10^{-29} kg}{1.$	<mark>ተ</mark> አ		Roll No		HSSC-(P-II)-A-2024 (For All Sessions)			Paper Code	8	4	7	2
Note: Wite Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Varianser you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided in the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided in the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided in the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided in the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided in the correct of the correct o	Ph	ysi	CS (Objective)		(GRe	OUP-II)	1		es	N	1arks	: 1
(A) Zero (B) $1.67 \times 10^{-27} kg$ (C) $1.67 \times 10^{-21} kg$ (D) $9.1 \times 10^{-31} kg$ 2. X-rays are also known as: (A) Cathode rays (B) Positive rays (C) r -rays (D) Alpha rays 3. The atomic number of ${}^{141}_{5}$ Ba is: (A) 141 (B) 56 (C) 85 (D) 92 4. One unified mass scale (IV) is equal to: (A) $1.66 \times 10^{-19} kg$ (B) $1.66 \times 10^{-27} kg$ (C) $1.66 \times 10^{-31} kg$ (D) $1.66 \times 10^{-28} kg$ 5. Value of dielectric constant for vacuum is: (A) Less than 1 (B) Greater than 1 (C) One (D) 1.5 6. Gold band on resistor represent its tolerance equal to: (A) $\pm 10\%$ (B) $\pm 5\%$ (C) $\pm 15\%$ (D) $\pm 20\%$ 7. An apparatus placed within a metal enclosure is "shielded" from: (A) Electric field (B) Magnetic field (C) Gravitational field (D) Electromagnetic field (A) Electric induction is: (A) Weber (B) Tesla (C) Newton (D) Joule (A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB (D) NC/AB (D) NC/AB (D) The sensitivity of Galvanometer can be increased by decreasing: (A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB (ossible answers	A, B, C and D to				
2. X-rays are also known as: (A) Cathode rays (B) Positive rays (C) r -rays (D) Alpha rays 3. The atomic number of ${}^{141}_{56}$ Ba is: (A) 141 (B) 56 (C) 85 (D) 92 4. One unified mass scale (1U) is equal to: (A) $1.66 \times 10^{-19} kg$ (B) $1.66 \times 10^{-27} kg$ (C) $1.66 \times 10^{-31} kg$ (D) $1.66 \times 10^{-28} kg$ 5. Value of dielectric constant for vacuum is: (A) Less than 1 (B) Greater than 1 (C) One (D) 1.5 6. Gold band on resistor represent its tolerance equal to: (A) $\pm 10\%$ (B) $\pm 5\%$ (C) $\pm 15\%$ (D) $\pm 20\%$ 7. An apparatus placed within a metal enclosure is "shielded" from: (A) Electric field (B) Magnetic field (C) Gravitational field (D) Electromagnetic field 8. The SI unit of magnetic induction is: (A) Weber (B) Testa (C) Newton (D) Joule 9. The sensitivity of Galvanometer can be increased by decreasing: (A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB 10. The minus sign in Faraday's law of electromagnetic induction shows that the direction of induced emf is such that it opposes the change (A) Electric flux (B) Electromagnetic flux (C) Gravitational flux (D) Magnetic flux 11. The emf induced in a generator is: (A) $No AB Sin\theta$ (B) $No IB Sin\theta$ (C) $NAB Sin\theta$ (D) $No B Sin\theta$ 11. The value of angular frequency " o " is equivalent to: (A) $\sqrt{2}I_0$ (B) $I_0/\sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " o " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n a froom temperature is: (A) $0.7v$ (B) $1.9v$ (C) $0.6v$ (D) $0.3v$ 16. The mathematical notation for exclusive OR-operation is: (A) $N = A + B$ (B) $N = A + B + B = A$ (C) $N = A + B + B = A$ (C) $N = A + B + B = A$ (D) Einstein	1.1	The	rest mass of photon is:							,		
2. X-rays are also known as: (A) Cathode rays (B) Positive rays (C) r -rays (D) Alpha rays 3. The atomic number of ${}^{141}_{56}$ Ba is: (A) 141 (B) 56 (C) 85 (D) 92 4. One unified mass scale (1U) is equal to: (A) $1.66 \times 10^{-19} kg$ (B) $1.66 \times 10^{-27} kg$ (C) $1.66 \times 10^{-31} kg$ (D) $1.66 \times 10^{-28} kg$ 5. Value of dielectric constant for vacuum is: (A) Less than 1 (B) Greater than 1 (C) One (D) 1.5 6. Gold band on resistor represent its tolerance equal to: (A) $\pm 10\%$ (B) $\pm 5\%$ (C) $\pm 15\%$ (D) $\pm 20\%$ 7. An apparatus placed within a metal enclosure is "shielded" from: (A) Electric field (B) Magnetic field (C) Gravitational field (D) Electromagnetic field 8. The SI unit of magnetic induction is: (A) Weber (B) Testa (C) Newton (D) Joule 9. The sensitivity of Galvanometer can be increased by decreasing: (A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB 10. The minus sign in Faraday's law of electromagnetic induction shows that the direction of induced emf is such that it opposes the change (A) Electric flux (B) Electromagnetic flux (C) Gravitational flux (D) Magnetic flux 11. The emf induced in a generator is: (A) $No AB Sin\theta$ (B) $No IB Sin\theta$ (C) $NAB Sin\theta$ (D) $No B Sin\theta$ 11. The value of angular frequency " o " is equivalent to: (A) $\sqrt{2}I_0$ (B) $I_0/\sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " o " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n a froom temperature is: (A) $0.7v$ (B) $1.9v$ (C) $0.6v$ (D) $0.3v$ 16. The mathematical notation for exclusive OR-operation is: (A) $N = A + B$ (B) $N = A + B + B = A$ (C) $N = A + B + B = A$ (C) $N = A + B + B = A$ (D) Einstein		(A)	Zero	(B)	$1.67 \times 10^{-27} kg$	(C), 🐬	1.67×10^{-3}	i kg (D)	9.1	× 10-3	81 kg	
3. The atomic number of ${}^{141}_{56}$ Ba is: (A) 141 (B) 56 (C) 65 (D) 92 4. One unified mass scale (1U) is equal to: (A) 1.66 \times 10 ⁻¹⁹ kg (B) 1.66 \times 10 ⁻²⁷ kg (C) 1.66 \times 10 ⁻³¹ kg (D) 1.66 \times 10 ⁻²⁸ kg 5. Value of dielectric constant for vacuum is: (A) Less than 1 (B) Greater than 1 (C) One (D) 1.5 6. Gold band on resistor represent its tolerance equal to: (A) \pm 10% (B) \pm 5% (C) \pm 15% (D) \pm 20% 7. An apparatus placed within a metal enclosure is "shielded" from: (A) Electric field (B) Magnetic field (C) Gravitational field (D) Electromagnetic field 8. The SI unit of magnetic induction is: (A) Weber (B) Tesla (C) Newton (D) Joule 9. The sensitivity of Galvanometer can be increased by decreasing: (A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB 10. The minus sign in Faraday's law of electromagnetic induction shows that the direction of induced emf is such that it opposes the change (A) Electric flux (B) Electromagnetic flux (C) Gravitational flux (D) Magnetic flux 11. The emf induced in a generator is: (A) $N\omega ABSin\theta$ (B) $N\omega IBSin\theta$ (C) $NABSin\theta$ (D) $N\omega BSin\theta$ 12. If I_0 is the peak value of A.C current, its average value over a complete cycle is: (A) $\sqrt{2} I_0$ (B) $I_0/\sqrt{2}$ (C) $\sqrt{\frac{1}{2}}$ (D) Zero 13. The value of angular frequency " ω " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are	2.	X-ray	ys are also known as:			s de la companya del companya de la companya del companya de la co						
(A) 141 (B) 56 (C) 85 (D) 92 4. One unified mass scale (1U) is equal to: (A) $1.66 \times 10^{-19} kg$ (B) $1.66 \times 10^{-27} kg$ (C) $1.66 \times 10^{-31} kg$ (D) $1.66 \times 10^{-28} kg$ 5. Value of dielectric constant for vacuum is: (A) Less than 1 (B) Greater than 1 (C) One (D) 1.5 6. Gold band on resistor represent its tolerance equal to: (A) $\pm 10\%$ (B) $\pm 5\%$ (C) $\pm 15\%$ (D) $\pm 20\%$ 7. An apparatus placed within a metal enclosure is "shielded" from: (A) Electric field (B) Magnetic field (C) Gravitational field (D) Electromagnetic field 8. The Si unit of magnetic induction is: (A) Weber (B) Testa (G) Newton (D) Joule 9. The sensitivity of Galvanometer can be increased by decreasing: (A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB 10. The minus sign in Faraday's law of electromagnetic induction shows that the direction of induced emf is such that it opposes the change (A) Electric flux (B) Electromagnetic flux (C) Gravitational flux (D) Magnetic flux 11. The emf induced in a generator is: (A) $N\omega AB Sin\theta$ (B) $N\omega IB Sin\theta$ (C) $NAB Sin\theta$ (D) $N\omega B Sin\theta$ 12. IIJ_0 is the peak value of A.C current, its average value over a complete cycle is: (A) $\sqrt{2} I_0$ (B) $I_0/\sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " ω " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are		(A)	Cathode rays	(B)	Positive rays	(C)	r-rays	(D)	Alpha rays		ys	
4. One unified mass scale (1U) is equal to: (A) $1.66 \times 10^{-19} \ kg$ (B) $1.66 \times 10^{-27} \ kg$ (C) $1.66 \times 10^{-31} \ kg$ (D) $1.66 \times 10^{-28} \ kg$ 5. Value of dielectric constant for vacuum is: (A) Less than 1 (B) Greater than 1 (C) One (D) 1.5 6. Gold band on resistor represent its tolerance equal to: (A) $\pm 1.0\%$ (B) $\pm 5\%$ (C) $\pm 1.5\%$ (D) $\pm 2.0\%$ 7. An apparatus placed within a metal enclosure is "shielded" from: (A) Electric field (B) Magnetic field (C) Gravitational field (D) Electromagnetic field (A) Weber (B) Tesla (C) Newton (D) Joule (A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB (D	3.	The	atomic number of $\frac{141}{56}$ B	Ba is:	The second second second						•	•
(A) $1.66 \times 10^{-19} kg$ (B) $1.66 \times 10^{-27} kg$ (C) $1.66 \times 10^{-31} kg$ (D) $1.66 \times 10^{-28} kg$ 5. Value of dielectric constant for vacuum is: (A) Less than 1 (B) Greater than 1 (C) One (D) 1.5 6. Gold band on resistor represent its tolerance equal to: (A) $\pm 10\%$ (B) $\pm 5\%$ (C) $\pm 15\%$ (D) $\pm 20\%$ 7. An apparatus placed within a metal enclosure is "shielded" from: (A) Electric field (B) Magnetic field (C) Gravitational field (D) Electromagnetic field B. The SI unit of magnetic induction is: (A) Weber (B) Tesla (C) Newton (D) Joule The sensitivity of Galvanometer can be increased by decreasing: (A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB 10. The minus sign in Faraday's law of electromagnetic induction shows that the direction of induced emf is such that it opposes the change (A) Electric flux (B) Electromagnetic flux (C) Gravitational flux (D) Magnetic flux 11. The emf induced in a generator is: (A) $N\omega AB Sin\theta$ (B) $N\omega IB Sin\theta$ (C) $NAB Sin\theta$ (D) $N\omega B Sin\theta$ 12. If I_0 is the peak value of A.C current, its average value over a complete cycle is: (A) $\sqrt{2} I_0$ (B) $I_0/\sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " ω " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 0 (B) 0 (C) 0 (C) 0 (D)		(A)	141	(B)	56	(C)	85	(D)		92		
5. Value of dielectric constant for vacuum is: (A) Less than 1 (B) Greater than 1 (C) One (D) 1.5 6. Gold band on resistor represent its tolerance equal to: (A) $\pm 10\%$ (B) $\pm 5\%$ (C) $\pm 15\%$ (D) $\pm 20\%$ 7. An apparatus placed within a metal enclosure is "shielded" from: (A) Electric field (B) Magnetic field (C) Gravitational field (D) Electromagnetic field B. The SI unit of magnetic induction is: (A) Weber (B) Testa (C) Newton (D) Joule The sensitivity of Galvanometer can be increased by decreasing: (A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB 10. The minus sign in Faraday's law of electromagnetic induction shows that the direction of induced emf is such that it opposes the change (A) Electric flux (B) Electromagnetic flux (C) Gravitational flux (D) Magnetic flux 11. The emf induced in a generator is: (A) $N\omega AB Sin\theta$ (B) $N\omega IB Sin\theta$ (C) $NAB Sin\theta$ (D) $N\omega B Sin\theta$ 12. If I_0 is the peak value of A.C current, its average value over a complete cycle is: (A) $\sqrt{2} I_0$ (B) $I_0/\sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " ω " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 0 (B) 0 (B) 0 (C) 0 (C) 0 (D) (D) (D) (D) (D) (D) (D) (D) (D) (D)	4.	One	unified mass scale (1U)	is equal to	d ~.	\	4					
(A) Less than 1 (B) Greater than 1 (C) One (D) 1.5 6. Gold band on resistor represent its tolerance equal to: (A) $\pm 10\%$ (B) $\pm 5\%$ (C) $\pm 15\%$ (D) $\pm 20\%$ 7. An apparatus placed within a metal enclosure is "shielded" from: (A) Electric field (B) Magnetic field (C) Gravitational field (D) Electromagnetic field 8. The Si unit of magnetic induction is: (A) Weber (B) Testa (C) Newton (D) Joule 9. The sensitivity of Galvanometer can be increased by decreasing: (A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB 10. The minus sign in Faraday's law of electromagnetic induction shows that the direction of induced emf is such that it opposes the change (A) Electric flux (B) Electromagnetic flux (C) Gravitational flux (D) Magnetic flux 11. The emf induced in a generator is: (A) $N\omega AB$ $Sin\theta$ (B) $N\omega IB$ $Sin\theta$ (C) NAB $Sin\theta$ (D) $N\omega B$ $Sin\theta$ 12. If I_0 is the peak value of A.C current, its average value over a complete cycle is: (A) $\sqrt{2} I_0$ (B) $I_0/\sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " ω " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n at room temperature is: (A) $0.7v$ (B) $1.0v$ (C) $0.6v$ (D) $0.3v$ 16. The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A + B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (P) Genwer (C) Hertz (D) Einstein		(A)	$1.66\times10^{-19}kg$	(B)	$1.66\times10^{-27}kg$	~(C)	1.66×10^{-3}	¹ kg (D)	1.66	× 10 ⁻	28 kg	
6. Gold band on resistor represent its tolerance equal to: (A) $\pm 10\%$ (B) $\pm 5\%$ (C) $\pm 15\%$ (D) $\pm 20\%$ 7. An apparatus placed within a metal enclosure is "shielded" from: (A) Electric field (B) Magnetic field (C) Gravitational field (D) Electromagnetic field B. The Si unit of magnetic induction is: (A) Weber (B) Testa (C) Newton (D) Joule The sensitivity of Galvanometer can be increased by decreasing: (A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB 10. The minus sign in Faraday's law of electromagnetic induction shows that the direction of induced emf is such that it opposes the change (A) Electric flux (B) Electromagnetic flux (C) Gravitational flux (D) Magnetic flux The emf induced in a generator is: (A) $N\omega AB Sin\theta$ (B) $N\omega IB Sin\theta$ (C) $NAB Sin\theta$ (D) $N\omega B Sin\theta$ 11. If I_0 is the peak value of A.C current, its average value over a complete cycle is: (A) $\sqrt{2} I_0$ (B) $I_0/\sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " ω " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n at room temperature is: (A) $0.7 v$ (B) $1.0 v$ (C) $0.6 v$ (D) $0.3 v$ 16. The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A} + \overline{B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (P) Gerwer (C) Hertz (D) Einstein	5.	Value	e of dielectric constant fo	or vacuum	is:	and from	i	'~				
(A) $\pm 10\%$ (B) $\pm 5\%$ (C) $\pm 15\%$ (D) $\pm 20\%$ 7. An apparatus placed within a metal enclosure is "shielded" from: (A) Electric field (B) Magnetic field (C) Gravitational field (D) Electromagnetic field 8. The Si unit of magnetic induction is: (A) Weber (B) Tesla (C) Newton (D) Joule 9. The sensitivity of Galvanometer can be increased by decreasing: (A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB 10. The minus sign in Faraday's law of electromagnetic induction shows that the direction of induced emf is such that it opposes the change (A) Electric flux (B) Electromagnetic flux (C) Gravitational flux (D) Magnetic flux 11. The emf induced in a generator is: (A) $N\omega AB Sin\theta$ (B) $N\omega IB Sin\theta$ (C) $NAB Sin\theta$ (D) $N\omega B Sin\theta$ 12. If I_0 is the peak value of A.C current, its average value over a complete cycle is: (A) $\sqrt{2} I_0$ (B) $I_0/\sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " ω " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n at room temperature is: (A) $0.7v$ (B) $1.0v$ (C) $0.6v$ (D) $0.3v$ 16. The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A} + \overline{B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (P) Gerwer (C) Hertz (D) Einstein		(A)	(A) Less than 1 (B)		Greater than 1 (C)		One	One (D)		1.5		
7. An apparatus placed within a metal enclosure is "shielded" from: (A) Electric field (B) Magnetic field (C) Gravitational field (D) Electromagnetic field 8. The SI unit of magnetic induction is: (A) Weber (B) Testa (C) Newton (D) Joule 9. The sensitivity of Galvanometer can be increased by decreasing: (A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB 10. The minus sign in Faraday's law of electromagnetic induction shows that the direction of induced emf is such that it opposes the change (A) Electric flux (B) Electromagnetic flux (C) Gravitational flux (D) Magnetic flux 11. The emf induced in a generator is: (A) $N\omega ABSin\theta$ (B) $N\omega IBSin\theta$ (C) $NABSin\theta$ (D) $N\omega BSin\theta$ 12. If I_0 is the peak value of A.C current, its average value over a complete cycle is: (A) $\sqrt{2} I_0$ (B) $I_0/\sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " ω " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n at room temperature is: (A) $0.7v$ (B) $1.0v$ (C) $0.6v$ (D) $0.3v$ 16. The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A + B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (P) Gerwer (C) Hertz (D) Einstein	6.	Gold	band on resistor repres	ent its toler	rance equal to:			60,				
(A) Electric field (B) Magnetic field (C) Gravitational field (D) Electromagnetic field (B) The SI unit of magnetic induction is: (A) Weber (B) Tesla (C) Newton (D) Joule The sensitivity of Galvanometer can be increased by decreasing: (A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB The minus sign in Faraday's law of electromagnetic induction shows that the direction of induced emf is such that it opposes the change (A) Electric flux (B) Electromagnetic flux (C) Gravitational flux (D) Magnetic flux The emf induced in a generator is: (A) $N\omega AB Sin\theta$ (B) $N\omega IB Sin\theta$ (C) $NAB Sin\theta$ (D) $N\omega B Sin\theta$ 12. If I_0 is the peak value of $A.C$ current, its average value over a complete cycle is: (A) $\sqrt{2} I_0$ (B) $I_0/\sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " ω " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n at room temperature is: (A) $0.7 v$ (B) $1.0 v$ (C) $0.6 v$ (D) $0.3 v$ 16. The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A + B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (B) Genwer (C) Hertz (D) Einstein		(A)	±10%	(B)	±5%	(C)	±15%	(D)		±20%		
The SI unit of magnetic induction is: (A) Weber (B) Testa (C) Newton (D) Joule The sensitivity of Galvanometer can be increased by decreasing: (A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB To minus sign in Faraday's law of electromagnetic induction shows that the direction of induced emf is such that it opposes the change (A) Electric flux (B) Electromagnetic flux (C) Gravitational flux (D) Magnetic flux The emf induced in a generator is: (A) $N\omega AB Sin\theta$ (B) $N\omega IB Sin\theta$ (C) $NAB Sin\theta$ (D) $N\omega B Sin\theta$ 12. If I_0 is the peak value of A.C current, its average value over a complete cycle is: (A) $\sqrt{2} I_0$ (B) $I_0 / \sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " ω " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n at room temperature is: (A) $0.7v$ (B) $1.0v$ (C) $0.6v$ (D) $0.3v$ The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A} + \overline{B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB} + B \overline{A}$ (D) $X = \overline{A} - \overline{B}$ The photoelectric effect explained by: (A) Darission (P) Gerwer (C) Hertz (D) Einstein	7.	An a	pparatus placed within a	metal enc	losure is "shielded"	from:	G	\mathcal{O} .				
(A) Weber (B) Testa (C) Newton (D) Joule The sensitivity of Galvanometer can be increased by decreasing: (A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB 10. The minus sign in Faraday's law of electromagnetic induction shows that the direction of induced emf is such that it opposes the change (A) Electric flux (B) Electromagnetic flux (C) Gravitational flux (D) Magnetic flux 11. The emf induced in a generator is: (A) $N\omega AB Sin\theta$ (B) $N\omega IB Sin\theta$ (C) $NAB Sin\theta$ (D) $N\omega B Sin\theta$ 12. If I_0 is the peak value of A.C current, its average value over a complete cycle is: (A) $\sqrt{2} I_0$ (B) $I_0/\sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " ω " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n at room temperature is: (A) $0.7 v$ (B) $1.0 v$ (C) $0.6 v$ (D) $0.3 v$ 16. The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A + B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (P) Gerwer (C) Hertz (D) Einstein		(A)	Electric field	(B)	Magnetic field	⟨(Ć)	Gravitational 1	ield (D)	Electro	magne	tic field	
The sensitivity of Galvanometer can be increased by decreasing: (A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB 10. The minus sign in Faraday's law of electromagnetic induction shows that the direction of induced emf is such that it opposes the change (A) Electric flux (B) Electromagnetic flux (C) Gravitational flux (D) Magnetic flux (11). The emf induced in a generator is: (A) $N\omega AB Sin\theta$ (B) $N\omega IB Sin\theta$ (C) $NAB Sin\theta$ (D) $N\omega B Sin\theta$ 12. If I_0 is the peak value of A.C current, its average value over a complete cycle is: (A) $\sqrt{2} I_0$ (B) $I_0/\sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " ω " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n at room temperature is: (A) 0.7 v (B) 1.0 v (C) 0.6 v (D) 0.3 v 16. The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A + B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (P) Gerwer (C) Hertz (D) Einstein	8.	The S	SI unit of magnetic induc	ction is:			2					
(A) C/BAN (B) B/ACN (C) CB/AN (D) NC/AB 10. The minus sign in Faraday's law of electromagnetic induction shows that the direction of induced emf is such that it opposes the change (A) Electric flux (B) Electromagnetic flux (C) Gravitational flux (D) Magnetic flux (III). The emf induced in a generator is: (A) $N\omega AB \sin\theta$ (B) $N\omega IB \sin\theta$ (C) $NAB \sin\theta$ (D) $N\omega B \sin\theta$ (D	1	(A)	Weber	(B)	Tesla	(C)	Newtor	n (D)		Joule	е	
10. The minus sign in Faraday's law of electromagnetic induction shows that the direction of induced emf is such that it opposes the change (A) Electric flux (B) Electromagnetic flux (C) Gravitational flux (D) Magnetic flux (11. The emf induced in a generator is: (A) $N\omega AB Sin\theta$ (B) $N\omega IB Sin\theta$ (C) $NAB Sin\theta$ (D) $N\omega B Sin\theta$	9.	The	sensitivity of Galvanome	ter can be	increased by decre	asing:	• •	, Mar. 1. 14				
(A) Electric flux (B) Electromagnetic flux (C) Gravitational flux (D) Magnetic flux The emf induced in a generator is: (A) $N\omega$ AB $Sin\theta$ (B) $N\omega$ IB $Sin\theta$ (C) NAB $Sin\theta$ (D) $N\omega$ B $Sin\theta$ 12. If I_0 is the peak value of A.C current, its average value over a complete cycle is: (A) $\sqrt{2} I_0$ (B) $I_0/\sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " ω " is equivalent to: (A) 2π T (B) 4π f (C) 2π f (D) π f 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n at room temperature is: (A) $0.7 v$ (B) $1.0 v$ (C) $0.6 v$ (D) $0.3 v$ 16. The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A + B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (P) Genwer (C) Hertz (D) Einstein		(A)	C/BAN	(B) 🔑	B/ACN	(C)	CB/AN	(D)		NC/A	В	
11. The <i>emf</i> induced in a generator is: (A) $N\omega$ AB $Sin\theta$ (B) $N\omega$ IB $Sin\theta$ (C) NAB $Sin\theta$ (D) $N\omega$ B $Sin\theta$ 12. If I_0 is the peak value of A.C current, its average value over a complete cycle is: (A) $\sqrt{2} I_0$ (B) $I_0/\sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " ω " is equivalent to: (A) 2π T (B) 4π f (C) 2π f (D) π f 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n at room temperature is: (A) $0.7 v$ (B) $1.0 v$ (C) $0.6 v$ (D) $0.3 v$ 16. The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A + B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (P) Gerwer (C) Hertz (D) Einstein	10.	The n	ninus sign in Faraday's la	w of electron	magnetic induction sh	lows that the	direction of induc	$ced\ emf$ is such the	nat it opp	oses the	change	e in:
(A) $N\omega AB Sin\theta$ (B) $N\omega IB Sin\theta$ (C) $NAB Sin\theta$ (D) $N\omega B Sin\theta$ 12. If I_0 is the peak value of A.C current, its average value over a complete cycle is: (A) $\sqrt{2} I_0$ (B) $I_0/\sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " ω " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n at room temperature is: (A) 0.7 v (B) 1.0 v (C) 0.6 v (D) 0.3 v 16. The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A + B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (P) Gerwer (C) Hertz (D) Einstein		(A)	Electric flux	(B)	Electromagnetic fl	ux (C)	Gravitation	al flux (D)	Ma	gnetic f	lux	
12. If I_0 is the peak value of A.C current, its average value over a complete cycle is: (A) $\sqrt{2} I_0$ (B) $I_0/\sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " ω " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n at room temperature is: (A) 0.7 v (B) 1.0 v (C) 0.6 v (D) 0.3 v 16. The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A + B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (P) Gerwer (C) Hertz (D) Einstein	11.	The e	emf induced in a gener	ator is:								
(A) $\sqrt{2} I_0$ (B) $I_0 / \sqrt{2}$ (C) $\sqrt{\frac{I_0}{2}}$ (D) Zero 13. The value of angular frequency " ω " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n at room temperature is: (A) 0.7 v (B) 1.0 v (C) 0.6 v (D) 0.3 v 16. The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A + B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (P) Gerwer (C) Hertz (D) Einstein		(A)	Nω AB Sinθ	(B)	Nω IB Sinθ	(C)	NAB S	in heta (C))	ΝωΒ	Sin0	
13. The value of angular frequency " ω " is equivalent to: (A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n at room temperature is: (A) 0.7 V (B) 1.0 V (C) 0.6 V (D) 0.3 V 16. The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A + B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (P) Genwer (C) Hertz (D) Einstein	12.	If I_0 i	s the peak value of A.C	current, its	average value over	a complete	cycle is:					
(A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n at room temperature is: (A) 0.7 v (B) 1.0 v (C) 0.6 v (D) 0.3 v 16. The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A + B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (P) Gerwer (C) Hertz (D) Einstein		(A)	$\sqrt{2} I_0$	(B)	$I_0/\sqrt{2}$	(C)	$\sqrt{\frac{I_0}{2}}$	(D)		Zero		
(A) $2\pi T$ (B) $4\pi f$ (C) $2\pi f$ (D) πf 14. Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n at room temperature is: (A) 0.7 v (B) 1.0 v (C) 0.6 v (D) 0.3 v 16. The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A + B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (P) Gerwer (C) Hertz (D) Einstein	13.	The	value of angular frequen	cv "ω" is e	quivalent to:		131					
Based on the geometrical structure and arrangement of atoms, there are crystal systems: (A) 6 (B) 5 (C) 7 (D) 8 The potential barrier for the Ge^n at room temperature is: (A) 0.7 v (B) 1.0 v (C) 0.6 v (D) 0.3 v The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A + B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ The photoelectric effect explained by: (A) Darission (P) Gerwer (C) Hertz (D) Einstein				O THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF THE CONTRACTOR OF T		(C)	2π f	(D)		πf		
(A) 6 (B) 5 (C) 7 (D) 8 15. The potential barrier for the Ge^n at room temperature is: (A) 0.7 v (B) 1.0 v (C) 0.6 v (D) 0.3 v 16. The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A + B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (P) Genwer (C) Hertz (D) Einstein	14.				,					,		
 The potential barrier for the Geⁿ at room temperature is: (A) 0.7 v (B) 1.0 v (C) 0.6 v (D) 0.3 v The mathematical notation for exclusive OR-operation is: (A) X = A + B (B) X = A B + B A (C) X = AB + BA (D) X = A - B The photoelectric effect explained by: (A) Darission (B) Gerwer (C) Hertz (D) Einstein 					-					8		
(A) 0.7 V (B) 1.0 V (C) 0.6 V (D) 0.3 V 16. The mathematical notation for exclusive OR-operation is: (A) $X = \overline{A + B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (P) Genwer (C) Hertz (D) Einstein	15.		otential barrier for the G		n temperature is:	(-)		ν-,		-		
 The mathematical notation for exclusive OR-operation is: (A)					•	(C)	0.6 v	(D)		0.3 v		
(A) $X = \overline{A + B}$ (B) $X = A \overline{B} + B \overline{A}$ (C) $X = \overline{AB + BA}$ (D) $X = \overline{A - B}$ 17. The photoelectric effect explained by: (A) Darission (P) Genwer (C) Hertz (D) Einstein	16.	(8) (8)				(-)		(-)				
77. The photoelectric effect explained by: (A) Darission (P) Gerwer (C) Hertz (D) Einstein					•	(C)	$X = \overline{AR + B}$	<u>7.4</u> (D)	X	= A -	R	
(A) Darission (P) Gerwer (C) Hertz (D) Einstein	17				n = nu·un	(0)	7 - 10 + p	(5)	Λ	A	~	
				•			Hertz	(D)	2 E	Einstein		

Physics (Subjective)

(For All Sessions) (GROUP-II)

Marks: 68

Time: 2:40 hours

SECTION-I

Write short answers of any eight parts from the following: 2.

RWP-2-24

(8x2=16)

- Differentiate between electric potential difference and electric potential energy difference and write its relation.
- Why is the potential difference between the plates of capacitor decreased when dielectric material is inserted between the plates? ii.
- Describe the force or forces on a positive point charge when placed between parallel plates with opposite & equal charges.
- If a point charge q of mass m is released in a non-uniform electric field with field lines pointing in the same direction, will iv. it make a rectilinear motion?
- What is the advantage of synchronization control in case of CRO? What is digital multimeter? Why is it easier to use? ٧.
- How can a current loop be used to determine the presence of a magnetic field in a given region of space? VII.
- What should be the orientation of a current carrying coil in a magnetic field so that torque acting upon the coil is (a) viii. maximum (b) minimum?
- Equal doses of different radiations do not produce same biological effect. Explain. x. Name the six quarks. ix.
- How can radioactivity help in the treatment of cancer? χii. State two sources of "background radiation" xi.
- Write short answers of any eight parts from the following: 3.

- What are the difficulties in testing whether the filament of a lighted bulb obeys Ohm's law? i.
- Explain under what condition, the wheat stone bridge is said to be balanced? What is thermistor? Write its principle. iii. ii.
- How many times per second will an incandescent lamp reach maximum brilliance when connected to a 50Hz source? VI.
- Why the choke is used in A.C. circuits? What is modulation signal and what are the carrier wave? ٧. What is meant by strain energy? How can it be determined from the force-extension graph?
- VII. Differentiate between Young's modulus and Bulk's modulus VIII.
- What is hysteresis loss?
- What is a net charge on a n-type or a p-type substance? Χ.
- xi. How is p-n junction formed?
- Calculate the gain of a non-inverting amplifier when $R_1=infinity$ and $R_2=0$ XII.
- Write short answers of any six parts from the following: 4.

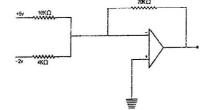
(6x2=12)

- Does the induced emf in a circuit depend on the resistance of the circuit? i.
- Is it possible to change both the area of the loop and magnetic field passing through the loop and still not have an ii. induced emf in the loop?
- When does light behave as a wave? When does it acts as a particle? iii.
- If an electron and proton have the same de-broglie wavelength, which particle has greater speed? iv.
- How can the spectrum of hydrogen contain so many lines? when hydrogen contain one electron. ٧.
- What is the principle of A.C. generator? Vİ.
- vir. What are inertial and non-inertial frame of references?
- What is the difference between special theory of relativity and general theory of relativity? viii.
- Differentiate between ionization energy and excitation energy.

Attempt any three questions. Each question carries equal marks: Note

(8x3=24)

- Derive a relation for electrical potential at a point due to a point charge. 5. (a)


(5)(3)

(3)

- The resistance of an iron wire at 0° C is $1 \times 10^{4} \Omega$. What is resistance at 500° C, if the temperature co-efficient of resistance of iron is $5.2 \times 10^{-3} k^{-1}$?
- (5)

- Define transformer. Explain its principle, construction and working. 6. (a)
 - What current should pass through a solenoid that is 0.5 m long with 10,000 turns of copper wire so that it will (b) have a magnetic field of 0.4T?
- What is the series resonance circuit? Derive the relation of resonance frequency and write down its properties. 7. (a)
- (5)(3)

Calculate the output of the op-amp circuit shown in figure:

- Write a note on energy band theory and classify conductors, insulators and semiconductors on the basis of this theory. (5)8. (a)
 - What is the maximum wavelength of the two photons produced when a positron annihilates an electron? The rest mass energy of each is 0.51 MeV.

628-12-A

- Define fusion reaction. Explain it in sun with the help of nuclear reactions. 9. (a)
 - Compute the shortest wavelength radiation in Balmer series? What value of 'n' must be used.

(5)(3)

(3)